Secondary Metabolites of Isis hippuris: In vitro and In silico Studies on Antimicrobial Potential
Main Article Content
Abstract
Isis hippuris is a marine species and is abundant in Southeast Sulawesi. However, studies on its potential, particularly for medicinal development, are still limited. This research aims to explore the chemical contents and biological activities of I. hippuris from the waters of Bukori Island. Ethylacetate extract of I. hippuris (EAE) was fractionated by vacuum liquid chromatography (VLC) and analyzed through phytochemical screening and LC-MS/MS. The antimicrobial potential was evaluated against Escherichia coli, Staphylococcus aureus, and Candida albicans using the microdilution method and in silico analysis. The results showed that fractionation of EAE produced five fractions (A–E). Fraction E showed the highest antibacterial activity against S. aureus and E. coli, with MIC values of 2 μg/mL, thus categorized as susceptible. At the same time, Fractions C and E exhibited the highest antifungal activity against C. albicans, with MIC
values of 4 μg/mL, thus categorized as susceptible. Additionally, 3 out of 12 major compounds in Fraction E and 14 of 21 major compounds in Fraction C were identified. In silico studies predicted that periplocoside M and 25(S)-ruscogenin have the highest affinity for S. aureus, saurufuran B and siraitic acid E for E. coli, and abrusoside A and periplocoside M for C. albicans, targeting β- ketoacyl-ACP synthase, tyrosyl-tRNA synthetase, and sterol-14α-demethylase, respectively. In conclusion, I. hippuris from Southeast Sulawesi shows promising potential as an antibiotic agent
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1. Sadarun B, Wahyuni, Malaka MH, Fristiohady A, Yodha AWM, Rahmatika NS, Islami ZS, Nurjayadin M, Sabandar CW, Darmawan A, Sundowo A, Rosandi AR, Sahidin I. Biological activities of Steroids and Extracts from Xestospongia sp. growing in Southeast Sulawesi (Indonesia). Res. J. Pharm. Technol. 2022; 15(4):1487-3. Doi: 10.52711/0974-360X.2022.00247
2. Sahidin I, Sabandar CW, Wahyuni, Hamsidi R, Malaka MH, Sadarun B, Aslan LO. A-Nor Sterols from an Indonesian Marine Sponge, Clathria Species. MJAS. 2018; 22(3): 375-382. Doi: 10.17576/mjas-2018-2203-02
3. Sahidin I, Sabandar CW, Wahyuni, Hamsidi R, Mardikasari SA, Zubaydah WOS, Sadarun B, Musnina WOS, Darmawan A, Sundowo A. Investigation of Compounds and Biological Activity of Selected Indonesian Marine Sponges. J. Nat. Prod. 2020; 10(3): 312-321. Doi: 10.2174/2210315509666190627105237
4. Wahyuni W, Fristiohady A, Malaka MH, Malik F, Yusuf MI, Leorita M, Sadarun B, Saleh A, Musnina WO, Sabandar CW, Sahidin IEffects of Indonesian Marine Sponges Ethanol Extracts on the Lipid Profile of Hyperlipidemic Rats. J. Appl. Pharm. Sci. 2019; 9(10): 008. Doi: 10.7324/JAPS.2019.91001
5. Fristiohady A, Wahyuni, Malik F, Purnama LOMJ, Sahidin I. Anti-Inflammatory Activity of Marine Sponge Callyspongia Sp. and Its Acute Toxicity. Asian J. Pharm Clin Res. 2019; 12(12): 97-100. Doi: 10.22159/ajpcr.2019.v12i12.34737
6. Fristiohady A, Sadrun B, Wahyuni Malaka MH, Ahmad F, Malik F, Purnama LOMJ, Sahidin I. Isolation and Identification of Secondary Metabolite Acetone Extract Aaptos sp. and its Antioxidant properties and Acute Toxicity. J. Appl. Pharm. Sci. 2020; 10(6): 081-089. Doi: 10.7324/JAPS.2020.10611
7. Sahidin I, Fristiohady A, Sadarun B, Rahmatika NS, Yodha AWM, Nur UEM, Sundowo A, Fajriah S. Antioxidant, Toxicity and Secondary Metabolites Contents of Ethylacetate Fraction from Soft Coral Lobophytum sp. Growing in South East Sulawesi. IOP Conf. Ser. Earth Environ. Sci. 2022; 1118(2022): 012026. Doi: 10.1088/1755-1315/1118/1/012026
8. Sahidin I, Sadarun B, Rahmatika NS, Yodha AWM, Fristiohady A, Sundowo S, Fajriah F. Phytochemical Screening, Antioxidant and Cytotoxic Activities of Ethyl acetate Subfractions of Soft Coral Nepthea sp. Growing in South East Sulawesi. J Appl Pharm Sci. 2023; 13(2): 99-105. Doi: 10.7324/JAPS.2023.130211
9. Sahidin I, Sadarun B, Wahyuni, Purnama LOMJ, Rahmatika NS, Malaka MH, Malik F, Fristiohady F. Research Article In vivo Anti-Inflammatory and Immunomodulatory Activity of Soft Coral Nepthea sp. from Southeast Sulawesi. Pak. J. Biol. Sci. 2023; 26(8): 403-408. Doi: 10.3923/pjbs.2023.403.408
10. Abdullah RA, Asbar. Abundance criteria of the Sea Bamboo (Isis hippuris) in the Waters of Konawe, Southeast Sulawesi. Jurnal Pendidikan Teknologi Pertanian. 2019; 5(1): 63-69. Doi: 10.26858/jptp.v5i1.8196
11. Prasetia IND, Setiabudi GI, Antara KL, Amelia JL, Saraswati NLPA. Mapping Marine Bamboo Potential (Isis sp.). JST. 2022; 11(2): 426-431. Doi: 10.23887/jstundiksha.v11i2.49448
12. Kazlauskas R, Murphy PT, Quinn RJ, Wells RJ. Hippurin-1, An Unusual Steroid from The Gorgonian Isis hippuris. Tetrahedron Lett. 1977; 50: 4439-4442. Doi: 10.1016/S0040-4039(01)83531-0
13. Huang J, Zaynab M, Sharif Y, Khan J, Al-Yahyai R, Sadder M, Ali M, larab SR, Li S. Tannins as antimicrobial agents: Understanding toxic effects on pathogens. Toxicon. 2024; 247: 107812. Doi: 10.1016/j.toxicon.2024.107812
14. Huang YQ, Chen PJ, Yang SN, Chien SY. 17,20-Epoxysteroids from octocoral Isis hippuris (Linnaeus, 1758). Tetrahedron Lett. 2022; 108: 154142. Doi: 10.1016/j.tetlet.2022.154142
15. Chao CH, Huang LF, Wu SL, Su JH, Huang HC, Sheu JH. Steroids from the Gorgonian Isis hippuris. J. Nat. Prod. 2005; 68(9): 1366–1370. Doi: 10.1021/np050200u
16. Sheu JH, Huang LF, Chen SP, Yang YL, Sung PJ, Wang GH, Su JH, Chao CH, Hu WP, Wang JJ. Hippuristerones E-I, new polyoxygenated steroids from the Gorgonian coral Isis hippuris. J. Nat. Prod. 2003; 66(7): 917–921. Doi: 10.1021/np020602r
17. Sayuti M, Putri WDR, Yunianta. Phytochemical screening and antioxidant activity test of Isis hippuris methanol extract. Int. J. ChemTech. Res. 2016; 9(7): 427–434.
18. Trianto A, Andriyas Y, Ridlo A, Sedjati S, Susilaningsih N, Murwani R. The ethanolic extracts of the gorgonian Isis hippuris inhibited the induced mammary carcinoma growth in C3H mice. IOP Conf. Ser. Earth Environ. Sci. 2018; 116(1): 012104. Doi: 10.1088/1755-1315/116/1/012104
19. Liang CH, Chou TH, Yang CC, Hung WJ, Chang LC, Cheng DL, Wang GH. Cytotoxic effect of Discosoma sp., Isis hippuris, and Nephthea chabrolii on human oral SCC25 cells. J. Taiwan Inst. Chem. Eng. 2010; 41(3): 333–337. Doi: 10.1016/j.jtice.2009.09.006
20. Chen SJ, Hsu CP, Li CW, Lu JH, Chuang LT. Pinolenic acid inhibits human breast cancer MDA-MB-231 cell metastasis in vitro. Food Chem. 2011; 126(4): 1708–1715. Doi: 10.1016/j.foodchem.2010.12.064
21. Huang YQ, Illias AM, Chen PJ, Chien SY, Kuo YH. 24-Dehydrohippuristanol, a cytotoxic spiroketal steroid from Isis hippuris. Tetrahedron Lett. 2023; 123: 154540. Doi: 10.1016/j.tetlet.2023.154540
22. Chen WH, Wang SK, Duh CY. Polyhydroxylated Steroids from the Bamboo Coral Isis hippuris. Mar. Drug. 2011; 9(10): 1829- 1839. Doi: 10.3390/md9101829
23. González N, Barral MA, Rodrı́guez J, Jiménez C. New cytotoxic steroids from the gorgonian Isis hippuris. Structure–activity studies. Tetrahedron. 2001; 57(16): 3487–3497. Doi: 10.1016/S0040-4020(01)00223-X
24. Rowley SJ. Environmental gradients structure gorgonian assemblages on coral reefs in SE Sulawesi, Indonesia. CoralReefs. 2018; 37(2): 609-630. Doi: 10.1007/s00338-018-1685-y
25. Faryuni ID, Saint-Amand A, Dobbelaere T, Umar W, Jompa J, Moore AM, Hanert E. Assessing Coral Reef Conservation Planning in Wakatobi National Park (Indonesia) from larval connectivity networks. Coral Reefs. 2024; 43(1): 19-33. Doi: 10.1007/s00338-023-02443-y
26. Ijoma IK, Anosike JC, Onwuka C, Njokunwogbu AN, Ajiwe VIE. Phytochemical Constituents of Justicia carnea Leaves and their Antibacterial Activity. Trop. J. Nat. Prod. Res. 2025; 9(1): 123–127. Doi: 10.26538/tjnpr/v9i1.18
27. Ijoma IK, Ajiwe VIE. Antibacterial Activity of Phytochemicals in Ficus thonningii Leaves Extracts Against Some Selected Pathogenic Bacterial Prevalent in Sickle Cell Anemia. JJPS. 2023; 16(2), 345–355. Doi: 10.35516/jjps.v16i2.344
28. Ijoma IK, Ajiwe VIE, Ndubuisi JO. Evidence-based preferential in vitro antisickling mechanism of three native Nigerian plants used in the management of sickle cell disease. Malaysian J.Biochem. Mol. Biol. 2022; 25(3): 9-17.
29. Hamsidi R, Karmilah, Daud NS, Malaka MH, Yodha AWM, Musdalipah, Arfan, Sahidin. Chemotaxonomy in the Etlingera Genus from Sulawesi, Indonesia: Design and molecular docking of the antioxidant marker. Biodiversitas Journal of Biological Diversity (BIODIV) 2024; 25(2), 449–457. Doi: 10.13057/biodiv/d250202
30. Price AC, Choi KH, Heath RJ, Li Z, White SW, Rock CO. Inhibition of Ketoacyl-Acyl Carrier Protein Synthases, by Thiolactomycin and Cerulenin: Structure and Mechanism. J. Biol. Chem. 2001; 276(9): 6551–6559. Doi: 10.1074/jbc.M007101200
31. Qiu X, Janson CA, Smith WW, Green SM, McDevitt P, Johanson K. Crystal structure of Staphylococcus aureus tyrosyl-tRNA synthetase in complex with a class of potent and specific inhibitors. Protein Sci. 2001; 10(10): 2008–2016. Doi: 10.1110/ps.18001
32. Hargrove TY, Frigger L, Wawrzak Z, Qi A, Hoekstra WJ, Schotzinger RJ. Structural analyses of Candida albicans sterol; - demethylase complexed with azole drugs address the molecular basis of azole-mediated inhibition of fungal sterol biosynthesis. J. Biol. Chem. 2017; 292(16): 6728–6743. Doi: 10.1371/journal.ppat.1011583
33. Arfan A, Asnawi A, Aman LO. Marine Sponge Xestospongia sp.: A Promising Source for Tuberculosis Drug Development- Computational Insights into Mycobactin Biosynthesis Inhibition. Borneo J. Pharm. 2024; 7(1): 40–50. Doi: 10.33084/bjop.v7i1.5513
34. Arfan A, Muliadi R, Malina R, Trinovitasari N, Asnawi A. Docking and Dynamics Studies: Identifying the Binding Ability of Quercetin Analogs to the ADP-Ribose Phosphatase of SARS CoV-2. J. Kartika Kim. 2022; 5(2): 145–151. Doi: 10.26874/jkk.v5i2.143
35. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009; 30(16): 2785–91. Doi: 10.1002/jcc.21256
36. Cushnie T, Lamb AJ. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents. 2005; 26(5): 343–356. Doi: 10.1016/j.ijantimicag.2005.09.002
37. Vollaro A, Esposito A, Antonaki E, Lula VD, D’Alonzo D, Guaragna A, De Gregorio E. Steroid Derivatives as Potential Antimicrobial Agents against Staphylococcus aureus Planktonic Cells. Microorganisms. 2020; 8(4): 468. Doi: 10.3390/microorganisms8040468
38. Mahizan NA, Yang SK, Moo CW, Song AA, Chong CW, Abushelaibi A, Lim SE, Lai KS. Terpene Derivatives as a Potential Agent against Antimicrobial Resistance (AMR) Pathogens. Molecules. 2019; 24(14): 2631. Doi: 10.3390/molecules24142631
39. Walsh DJ, Livinghouse T, Goeres DM, Mettler M, Stewart PS. Antimicrobial Activity of Naturally Occurring Phenols and Derivatives Against Biofilm and Planktonic Bacteria. Front. Chem. 2019; 7(653). Doi: 10.3389/fchem.2019.00653
40. Lestari OA, Palupi NS, Setiyono A, Kusnandar F, Yuliana ND. In vitro antioxidant potential and phytochemical profiling of Melastoma malabathricum leaf water extract. Food Sci. Technol. 2022; 42: e92021. Doi: 10.1590/fst.92021
41. Jokela R, Lounasmaa M. A mild novel synthesis of simple 1-oxo-β-carbolines. Tetrahedron. 1987; 43(24): 6001-6006. Doi: 10.1016/S0040-4020(01)87806-6
42. Hwang BY, Lee JH, Nam JB, Kim HS, Hong YS, Lee JJ. Two new furanoditerpenes from Saururus chinenesis and their effects on the activation of peroxisome proliferator-activated receptor γ. J. Nat. Prod. 2002; 65(4): 616-617. Doi: 10.1021/np010440j
43. Chan EW, Wong, SK, Chan HT. Ferruginol and Sugiol: A Short Review of their Chemistry, Sources, Contents, Pharmacological Properties and Patents. Trop. J. Nat. Prod. Res . 2023; 7(2): 2325-2336. Doi: 10.26538/tjnpr/v7i2.4
44. Xiao CJ, Liu YC, Luo SH, Hua J, Liu Y, Li SH. Localisation of two bioactive labdane diterpenoids in the peltate glandular trichomes of Leonurus japonicus by laser microdissection coupled with UPLC‐MS/MS. Phytochem. Anal. 2017; 28(5): 404-409. Doi: 10.1002/pca.2687
45. Wang R, Chen WH, Shi YP. ent-kaurane and ent-pimarane diterpenoids from Siegesbeckia pubescens. J Nat Prod. 2010; 73(1): 17-21. Doi: 10.1021/np9005579
46. Pholphana N, Panomvana D, Rangkadilok N, Suriyo T, Ungtrakul T, Pongpun W, Satayavivad J. A simple and sensitive LC-MS/MS method for determination of four major active diterpenoids from Andrographis paniculata in human plasma and its application to a pilot study. Planta Medica. 2016; 82(01/02): 113-120. Doi: 10.1055/s-0035-1558115
47. Wu Y, Wang XM, Bi SX, Zhang W, Li RM, Wang RJ, Qi J. Novel cytotoxic steroidal saponins from the roots of Liriope muscari (Decne.) LH Bailey. RSC Advances. 2017; 7(23): 13696-13706. Doi: 10.1039/C6RA26031D
48. Yi Y, Zhang J, Zheng H, Zhang J, Su Z. New saponins from the roots of Phytolacca polyandra. J. Nat. Prod. 1995; 58(12): 1880- 1882. Doi: 10.1021/np50126a011
49. Castellano L, de Correa RS, Martínez E, Calderon JS. Oleanane triterpenoids from Cedrela montana (Meliaceae). Z. Naturforsch C. J. Biosci. 2002; 57(7-8): 575-578. Doi: 10.1515/znc-2002-7-804
50. Zheng SZ, Yang HP, Ma XM, Shen XW. Two new polyporusterones from Polyorus umbellatus. Nat. Prod. Res. 2004; 18(5): 403-407. Doi: 10.1080/14786410310001630528
51. Barot DM, Parmar MP, Patel HM. Phytochemical Analysis and Biological Application of Abrus precatorius Linn: A Comprehensive Review. J. Chem. Rev. 2024; 6(3): 353-378. Doi: 10.48309/jcr.2024.457518.1330
52. Hanna VS, Hafez EAA. Synopsis of arachidonic acid metabolism: A review. J. Adv. Res. 2018; 11: 23-32. Doi: 10.1016/j.jare.2018.03.005
53. Lu F, Sun J, Jiang X, Song J, Yan X, Teng Q, Li D. Identification and isolation of α-glucosidase inhibitors from Siraitia grosvenorii
roots using bio-affinity ultrafiltration and comprehensive chromatography. Int. J. Mol. Sci. 2023; 24(12): 10178. Doi: 10.3390/ijms241210178
54. Wang X, Zhang J, He F, Jing W, Li M, Guo X, Cheng X, Wei F. Differential Chemical Components Analysis of Periplocae Cortex, Lycii Cortex, and Acanthopanacis Cortex Based on Mass Spectrometry Data and Chemometrics. Molecules, 2024; 29(16): 3807. Doi: 10.3390/molecules29163807
55. Verma R, Mitchell-Koch. K. 2017. In Silico Studies of Small Molecule Interactions with Enzymes Reveal Aspects of Catalytic Function. Catalysts. 2017; 7(7): 1–13. Doi: 10.3390/catal7070212
56. Korol N, Holovko-Kamoshenkova O, Mariychuk R, Slivka M. Insights into bacterial interactions: Comparing fluorine-containing 1,2,4-triazoles to antibiotics using molecular docking and molecular dynamics approaches. Heliyon. 2024; 10(17): e37538. Doi: 10.1016/j.heliyon.2024.e37538
57. Rouzer CA, Marnett LJ. Structural and Chemical Biology of the Interaction of Cyclooxygenase with Substrates and Non-Steroidal
Anti-Inflammatory Drugs. Chem. Rev. 2020; 120(15): 7592–7641. Doi: 10.1021/acs.chemrev.0c00215