The Potential of Dahlia Tuber Inulin as a Low-Fat Creamer and the Effects on Lipid Profiles, Liver Function, and Liver Histopathology in Rats

Main Article Content

Ismawati
Saryono
Mukhyarjon
Ilhami Romus
Nabella Suraya
Lunari Kesya
Dinda Salsabila
Cantika Natswa Deanra

Abstract

Inulin is a prebiotic food ingredient fermented selectively by various colonic bacteria but not digested by the host. Dahlia tuber from Bukittinggi City, West Sumatera, was reported to contain 84.08% inulin. Inulin has unique properties, such as its ability to form gels, emulsions, probiotics and creamer substitutes. Therefore, this research aimed to analyze dahlia tuber inulin creamer, and the effect of the administration on lipid profiles, liver function, and liver histopathology in rats. A total of sixteen male rats aged 2-3 months old and weighing 150–200 grams were divided into four categories. Group I was given only standard feed, Group II was administered inulin creamer, Group III received creamer without inulin, and Group IV was given a commercial creamer. Lipid profile and liver function analyses were performed with the DiaSys® kit using a 500 nm UV-Vis spectrophotometer. The results showed that liver histopathological assessment used NAFLD Activity Score (NAS). Analysis of Variance (ANOVA) test was used to compare serum triglyceride, total cholesterol, Low Density Lipoprotein (LDL) cholesterol, and High Density Lipoprotein (HDL) cholesterol and continued with the LSD test. In addition, Kruskall-Wallis test was used to compare serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) concentration, and liver inflammation grading with a statistically significant p <0.05. Administration of inulin creamer could prevent increases in triglyceride concentrations, total cholesterol, serum AST (Aspartate Aminotransferase) concentrations, and the degree of inflammation in the liver. Meanwhile, the administration of inulin creamer did not affect LDL cholesterol, HDL, or ALT (Alanine Aminotransferase) concentrations. Inulin creamer had excellent potential to be developed as a low-fat creamer.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Ismawati, Saryono, Mukhyarjon, Romus, I., Suraya, N., Kesya, L., Salsabila, D., & Deanra, C. N. (2025). The Potential of Dahlia Tuber Inulin as a Low-Fat Creamer and the Effects on Lipid Profiles, Liver Function, and Liver Histopathology in Rats. Tropical Journal of Natural Product Research (TJNPR), 9(6), 2779-2783. https://doi.org/10.26538/tjnpr/v9i6.57

References

1. Rusdi, B., Yuliawati, K. M., & Khairinisa, M. A. Comparison on the prebiotic polysaccharides and oligosaccharides from plant studies in Indonesia and outside of Indonesia. J. Eng. Sci. Technol. 2021; 16(3):2260–2272.

2. Ningsih, G. R., & Sanjaya, I. G. M. Determination of calcium levels with XRF and literature review of its bioavailability in vitro of dahlia tubers syrup (Dahlia Pinnata Cav.). Int. J. Chem. Stud. 2022; 11(2):145–159.

3. Putri, V. D., Yanti, S., Dyna, F., Saryono, S., & Ismawati, I. The extraction and characterization of inulin from dahlia bulbs (Dahlia variabilis). Int. Conf. Adv. Mater. Technol. (ICAMT) 2021; 2708.

4. Souza, M. A. de, Vilas-Boas, I. T., Leite-da-Silva, J. M., Abrahão, P. do N., Teixeira-Costa, B. E., & Veiga-Junior, V. F. Polysaccharides in agro-industrial biomass residues. Polysaccharides. 2022; 3(1):95–120.

5. Włodarczyk, M., & Śliżewska, K. Efficiency of resistant starch and dextrins as prebiotics: A review of the existing evidence and clinical trials. Nutrients. 2021; 13(11):3808.

6. Pompei, A., Cordisco, L., Raimondi, S., Amaretti, A., Pagnoni, U. M., Matteuzzi, D., et al. In vitro comparison of the prebiotic effects of two inulin-type fructans. Anaerobe. 2008; 14(5):280–286.

7. Lo, D., & Indrawanto, R. Effects of isomalto-oligosaccharide, inulin, and polydextrose on the development of sugar-free pineapple jam. IOP Conf. Ser. Earth Environ. Sci. 2022; 012021.

8. Haththotuwa, R. N., Wijeyaratne, C. N., & Senarath, U. Worldwide epidemic of obesity. In: Obesity and Obstetrics. Elsevier; 2020. p. 3–8.

9. Ayuningtyas, D., Kusuma, D., Amir, V., Tjandrarini, D. H., & Andarwati, P. Disparities in obesity rates among adults: Analysis of 514 districts in Indonesia. Nutrients. 2022; 14(16):3332.

10. Hedayatnia, S., Mirhosseini, H., Amid, B. T., Sarker, Z. I., Veličkovska, S. K., & Karim, R. Effect of different fat replacers and drying methods on thermal behaviour, morphology and sensory attributes of reduced-fat coffee creamer. LWT - Food Sci. Technol. 2016; 72:330–342.

11. Hanna, L. S., & Elmonem, H. A. A. Evaluation of cardiac biomarkers in albino rats consumed instant coffee and non-dairy creamer. J. Am. Sci. 2014; 10(5):96–102.

12. Liang, W., Lindeman, J. H., Menke, A. L., Koonen, D. P., Morrison, M., Havekes, L. M., et al. Metabolically induced liver inflammation leads to NASH and differs from LPS- or IL-1β-induced chronic inflammation. Lab. Invest. 2014; 94(5):491–502.

13. Diaz, D. B., Gumilas, N. S. A., Harini, I. M., & Saputra, I. N. Y. The effectiveness of pegagan (Centella asiatica L.) extract on SGPT and SGOT levels in hypercholesterolemic rats. Lambung Mangkurat Med. Sem. 2023; p. 623–626.

14. Uly, N., Yuniastuti, A., Susanti, R., & Tursinawati, Y. Improvement of insulin secretion and pancreatic β-cell function in streptozotocin-induced diabetic rats treated with Dioscorea esculenta extract. Trop. J. Nat. Prod. Res. 2023; 7(11):5050–5054.

15. Aufa, A., Ismawati, I., Romus, I., Putri, V. D., Yanti, S., & Dyna, F. Effect of dahlia tuber inulin extract on fatty liver in type 2 diabetes mellitus rats. E-J. Medika Udayana. 2024; 13(9):76–80.

16. Ismawati, I., Saryono, S., Mukhyarjon, M., Romus, I., Putri, V. D., Yanti, S., et al. Effect of inulin from dahlia tubers (Dahlia variabilis) extract on insulitis severity and insulin expression in diabetic rats. Biomedicine (Taipei). 2024; 14(3):4.

17. Ali, A., Iqbal, S., Sohaib, M., Khan, A. U., Younis, R. M. W., & Junaid, S. B. Effects of commercial non-dairy tea whitener consumption in comparison to milk on lipid profile, histopathology, and liver enzymes in animal model. Int. Food Res. J. 2022; 29(5):1043–1052.

18. Kosasih, W., Pudjiraharti, S., Ratnaningrum, D., & Priatni, S. Preparation of inulin from dahlia tubers. Procedia Chem. 2015; 16:190–194.

19. Goodman, Z. D. Grading and staging systems for inflammation and fibrosis in chronic liver diseases. J. Hepatol. 2007; 47(4):598–607.

20. Mumpuni, H., Yasmine, N., Marsono, Y., Fibri, D. L. N., & Murdiati, A. FiberCreme as a functional food ingredient reduces hyperlipidemia and risk of cardiovascular diseases in subjects with hyperlipidemia. Prev. Nutr. Food Sci. 2022; 27(2):165–171.

21. Dos Reis, S. A., Da Conceição, L. L., Rosa, D. D., Dias, M. M. dos S., & Peluzio, M. do C. G. Mechanisms used by inulin-type fructans to improve the lipid profile. Nutr. Hosp. 2015; 31(2):528–534.

22. Ahmed, W., & Rashid, S. Functional and therapeutic potential of inulin: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2019; 59(1):1–13.

23. Naguib, A. M., Abdel-Samad, A. K. M., Sharaf, O. M., Hamed, I. M., Soltan, S. I., & Hussein, M. M. The potential impact of different types of yogurt fortified with inulin and/or microencapsulated probiotic bacteria on diabetic rats. Jordan J. Biol. Sci. 2021; 14(4):699–707.

24. Farhangi, M. A., Javid, A. Z., & Dehghan, P. The effect of enriched chicory inulin on liver enzymes, calcium homeostasis and hematological parameters in patients with type 2 diabetes mellitus: A randomized placebo-controlled trial. Prim. Care Diabetes. 2016; 10(4):265–271.

25. Assawarachan, S. N., Chuchalermporn, P., Maneesaay, P., & Thengchaisri, N. Changes in serum lipid profiles among canine patients suffering from chronic hepatitis. Vet. Sci. 2021; 8(10):221.

26. Jasirwan, C. O. M., Lesmana, C. R. A., Hasan, I., Sulaiman, A. S., & Gani, R. A. The role of gut microbiota in non-alcoholic fatty liver disease: Pathways of mechanisms. Biosci. Microbiota Food Health. 2019; 38(3):81–88.

27. Zhang, Q., Yu, H., Xiao, X., Hu, L., Xin, F., & Yu, X. Inulin-type fructan improves diabetic phenotype and gut microbiota profiles in rats. PeerJ. 2018; 6:e4446.

28. Wan, X., Guo, H., Liang, Y., Zhou, C., Liu, Z., Li, K., et al. The physiological functions and pharmaceutical applications of inulin: A review. Carbohydr. Polym. 2020; 246:116589.

29. Liu, X. C., & Zhou, P. K. Tissue reactions and mechanism in cardiovascular diseases induced by radiation. Int. J. Mol. Sci. 2022; 23(23):14786.

30. Zhu, L., Qin, S., Zhai, S., Gao, Y., & Li, L. Inulin with different degrees of polymerization modulates composition of intestinal microbiota in mice. FEMS Microbiol. Lett. 2017; 364(10):fnx075.

31. Rohr, M. W., Narasimhulu, C. A., Rudeski-Rohr, T. A., & Parthasarathy, S. Negative effects of a high-fat diet on intestinal permeability: A review. Adv. Nutr. 2020; 11(1):77–91.

32. Ghavidel, F., Amiri, H., Tabrizi, M. H., Alidadi, S., Hosseini, H., & Sahebkar, A. The combinational effect of inulin and resveratrol on the oxidative stress and inflammation level in a rat model of diabetic nephropathy. Curr. Dev. Nutr. 2024; 8(1):102059.