Evaluation of Diuretic Potential of Aqueous Leaf Extract of Pavetta crassipes (K. Schum) in Rats
Main Article Content
Abstract
Pavetta crassipes is a plant used in the treatment of hypertension. The aim of the study was to evaluate the diuretic potential of aqueous leaf extract of P. crassipes in rats. Four hours and twenty-four hours diuretic and natriuretic activities of 125, 250 and 500 mg/kg aqueous leaf extract of P. crassipes were determined with distilled water and 10 mg/kg furosemide acting as negative and positive controls respectively in rats. Urine output was measured using graduated and transparent tubes on rat’s metabolic cages, while urinary sodium, potassium, and chloride assays were carried out using a spectrophotometer and standard test kits. P. crassipes extract at 125, 250 and 500 mg/kg lacks diuretic activity at four hours but showed diuretic activity at 24hours when compared with furosemide. The aqueous extract (125, 250 and 500 mg/kg) significantly increased urine output when compared with the distilled water group at 24 hours (p=0.03, p=0.04, and p=0.01, respectively). All the tested doses of the extract had a lower four hours natriuretic value when compared with furosemide, but higher natriuretic values at 24hours. The extract increased the excretion of sodium (Na+ ), potassium (K+ ) and chloride (Cl- ). The aqueous leaf extract of P. crassipes increased urine output in rats, with a late onset of diuresis and a good natriuretic activity at 24 hours, suggesting it as a possible good diuretic agent.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Fisher NDL and Curfman G. Hypertension-a public health challenge of global proportion. J Am Med Assoc. 2018; 320(17):1757-1759. doi:10.1001/jama.2018.16760
Mills KT, Bundy JD, Kelly TN, Reed JE, Kearney PM, Reynolds K, Chen J, He J. Global disparities of hypertension prevalence and control. A systematic analysis of population-based studies from 90 Countries. Circulation. 2016; 134:441–450.
Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Nat Rev Nephrol. 2020; 16(4):223–237.
Beevers G, Lip GYH, O'Brien E. The pathophysiology of hypertension. Br Med J. 2001; 322(7291):912–916.
Brown IAM, Diederich L, Good ME, DeLalio LJ, Murphy SA, Cortese-Krott MM, Hall JL, Le TH, Isakson BE. Vascular smooth muscle remodeling in conductive and resistance arteries in hypertension: VSMC in hypertension. Arterioscler Thromb Vasc Biol. 2018; 38(9):1969-1985.
Guyton AC, Coleman TG, Cowley AW, Scheel KW, Manning RD, Norman R A. Arterial pressure regulation. Overriding dominance of the kidneys in long-term regulation and in hypertension. Am J Med.1972; 52:584–594.
Samuel SA, Francis AO, Anthony OO. Role of the Kidneys in the Regulation of Intra- and Extra-Renal Blood Pressure. Ann Clin Hypertens. 2018; 2:048-058.
Wright JM and Musini VM. First-line drugs for hypertension. Cochrane Database Syst Rev. 2009; 3:CD001841
Roush GC and Sica DA. Diuretics for hypertension: A review and update. Am J Hypertens. 2016; 29(10):1130-1137.
Arumugham VB and Shahin MH. Therapeutic uses of diuretic agents. Therapeutic uses of diuretic agents. [online].2021 [Cited 2022 Feb 15]. Available from:https://www.ncbi.nlm.nih.gov/books/NBK557838/#__NBK557838_ai__
Carrizales-Sepulveda EF, Vera-Pineda R, JimenezCastillo RA, Benavides-Gonzalez MA, Ordaz-Farias A. Prevalence and outcome of diuretic resistance in heart failure: comment. Intern Emerg Med. 2019; 14(4):631-632.
Trullàs JC, Casado J, Morales-Rull JL, Formiga F, CondeMartel A, Quirós R, Epelde F, González-Franco Á, Manzano L, Montero-Pérez-Barquero M. Prevalence and outcome of diuretic resistance in heart failure. Intern Emerg Med. 2019; 14(4):529–537.
Wright CI, Van-Buren L, Kroner CI, Koning MM. Herbal medicines as diuretics: a review of the scientific evidence. J Ethnopharmacol. 2007; 114(1):1-31.
Bishop FL, Yardley L, Lewith GT. Why consumers maintain complementary and alternative medicine use: a qualitative study. J Altern Compl Med. 2010; 16:175–182.
Chrysant1 SG and Chrysant GS. Herbs Used for the Treatment of Hypertension and their Mechanism of Action. Curr Hypertens Rep. 2017; 19:77.
Tabassum N and Ahmad F. Role of natural herbs in the treatment of hypertension. Pharmacogn. Rev.2011; 5:30–40.
Shaito A, Thuan DTB, Phu HT, Nguyen THD, Hasan H, Halabi S, Abdelhady S, Nasrallah GK, Eid AH, Pintus G. Herbal medicine for cardiovascular diseases: efficacy, mechanisms, and safety. Front Pharmacol. 2020; 11:422.
Nacoulma O. Plantes médicinales et pratiques médicales traditionnelles au Burkina Faso Cas du plateau central.TOME II. Thèse d’Etat. Univ Ouaga.1996; 332p.
Ouattara LP, Sanon S, Mahiou-Leddet V, Gansané A, Baghdikian B, Traoré A, Nébié I,Traoré AS, Azas N, Ollivier E , Sirima SB. In vitro antiplasmodial activity of some medicinal plants of Burkina Faso. Parasitol Res. 2014; 113:405–416.
Bello IA, Ndukwe GI, Audu OT. Phytochemical analysis and biological activity of a precipitate from Pavetta crassipes. J Med Plants Res. 2014; 8:285-287.
Amos S, Okwuasaba FK, Gamaniel K, Akah P, Wambebe C. Inhibitory effects of the aqueous extract of Pavetta crassipes leaves on astrointestinal and uterine smooth muscle preparations isolated from rabbits, guinea pigs and rats. J Ethnopharmacol.1998; 61:209–213.
Amos S, Akah PA, Binda L, Enwerem NM, Ogundaini A, Wambebe C, Hussaini IM, Gamaniel KS. Hypotensive activity of the ethanol extract of Pavetta crassipes leaves. Biol Pharm Bull. 2003; 26(12):1674-1680.
Committee for the Update of the Guide for the Care and Use of Laboratory Animals . Guide for the Care and Use of Laboratory Animals. 8th ed. National Academies Press; Washington, DC, USA: 2011
Ingle KP, Deshmukh AG, Padole DA, Dudhare MS, Moharil MP, Khelurkar VC. Phytochemicals: Extraction methods, identification, and detection of bioactive compounds from plant extracts. J Pharmacogn Phytochem. 2017; 6:32–36.
Lorke D. A new approach to practical acute toxicity testing. Arch Toxicol. 1983; 54:275-287.
Kau ST, Keddie JR, Andrews D. A method for screening diuretic agents in the rat. J Pharmacol Methods. 1984; 11(1):67-75.
Fekadu N, Basha H, Meresa A, Degu S, Girma B, GeletaB. Diuretic activity of the aqueous crude extract and hot tea infusion of Moringa stenopetala (Baker f.) cufod. leaves. J Exp Pharmacol. 2017; 9:73-80.
Lipschitz WL, Hadidian Z, Kerpcsar A. Bioassay of diuretics. J Pharm Exp Ther. 1943; 79(2):97-110.
Vogel HG, Vogel WH, Scholkens BA, Sandow J, Muller G, Vogel WF. Drug Discovery and Evaluation: Pharmacological Assays. 3rd ed. Berlin: Springer; 2008. 323-325p.
Alexander WD, Branch RA, Levine DF, Hartog M. The urinary sodium: potassium ratio and response to diuretics in resistant oedema. Postgrad Med J. 1977; 53(617):117–121.
Shanmuganathan P and Kumarappan M. Evaluation of diuretic, saluretic and natriuretic activity of hydrochlorothiazide in combination with misoprostol in wistar rats . Natl J Physiol Pharm Pharmacol. 2018; 8(9):1226-1229.
Katzung BG. Basic and clinical pharmacology. Chapter15, 13th Edition 2015; 259p.
Clase CM, Carrero J-J, Ellison DH, Grams ME, Hemmelgarn BR, Jardine MJ, Kovesdy CP, Kline GA, Lindner G, Obrador GT, Palmer BF, Cheung M, Wheeler DC, Winkelmayer WC, Pecoits-Filho R. Potassium homeostasis and management of dyskalemia in kidney diseases: conclusions from a kidney disease:Improving Global Outcomes (KDIGO) controversies conference. Kidney Int. 2019; 97(1):42-61.
Palmer BF and Clegg DJ. Physiology and pathophysiology of potassium homeostasis: core curriculum 2019. Am J Kidney Dis. 2019; 74(1):682-695.
Yang L, Xu S, Guo X, Uchida S, Weinstein AM, WangT, Palmer LG. Regulation of renal Na transporters in response to dietary K. Am J Physiol Renal Physiol. 2018; 315:1032-1041.
Yang L, Frindt G, Lang F, Kuhl D, Vallon V, Lawrence G, Palmer LG. SGK1-dependent ENaC processing and trafficking in mice with high dietary K intake and elevated aldosterone. Am J Physiol Renal Physiol. 2017; 312:65-76.
Weinstein AM. A mathematical model of the rat kidney: K (+)-induced natriuresis. Am J Physiol Renal Physiol. 2017; 312:925-950.
Mareck UK, Herrmann R, Galensa V, Wray V. The 6-Cchinovoside and 6- C-fucoside of luteolin from Passiflora edulis. Phytochem. 1991; 30(10):3486-3487.