Integrated Bioinformatics and Docking Study on Phenolic Compounds for Targeting Hypoxia-Associated Genes in Preeclampsia

Main Article Content

Dwi Suryandari
Raden Muharam
Aryo Tedjo
Fadilah Fadilah

Abstract

Severe preeclampsia (severe PE) is a serious pregnancy complication associated with placental dysfunction, hypoxia, and an imbalance of angiogenic factors such as Soluble Fms-Like Tyrosine Kinase 1 (sFLT1). This study aims to identify significant Differentially Expressed Genes (DEGs) under hypoxic conditions, determine hub genes, and evaluate the therapeutic potential of phenolic compounds using an in silico approach. Shared DEGs analysis was conducted using Gene Expression Omnibus (GEO) datasets with the GEO2R method, and hub gene identification was performed using Cytoscape. Molecular docking simulations were carried out to assess the interaction of phenolic compounds with the target proteins of the identified hub genes. The analysis identified FLT1, VEGFC, EGFR, and FGF1 as key genes involved in the HIF-1, MAPK, and PI3K-Akt signaling pathways. Cross-validation using a neural network based on these four DEGs showed 100% sensitivity and specificity in the hypoxic vs. normoxic Human Trophoblast 8 (HTR8) cell model. In severe PE patient placentas, the sensitivity was 93.3% and the specificity 92.9%. Molecular docking results suggest salvianolic acid (rerank score -96.97 kJ/mol vs. -92.17 kJ/mol for the native ligand) as a potential EGFR inhibitor, predicted to reduce FLT1 expression. Meanwhile, baicalin (rerank score -136.70 kJ/mol vs. -129.33 kJ/mol for the native ligand) is predicted to directly inhibit FLT1 activity. This study highlights FLT1, VEGFC, EGFR, and FGF1 as potential biomarkers for severe PE diagnosis and supports the development of phenolic compounds as molecular-based therapies. Further in vitro and in vivo validation is required to confirm these findings. 

Downloads

Download data is not yet available.

Article Details

Section

Articles

Author Biographies

Aryo Tedjo, Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Salemba Raya 6, Jakarta 10430, Indonesia 

Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Salemba Raya 6, Jakarta 10430, Indonesia    Drug Development Research Cluster, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Salemba Raya 6, Jakarta 10430, Indonesia 

Fadilah Fadilah, Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Salemba Raya 6, Jakarta 10430, Indonesia 

Drug Development Research Cluster, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Salemba Raya 6, Jakarta 10430, Indonesia    Bioinformatics Core Facility, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Salemba Raya 6, Jakarta 10430, Indonesia 

How to Cite

Suryandari, D., Muharam, R., Tedjo, A., & Fadilah, F. (2025). Integrated Bioinformatics and Docking Study on Phenolic Compounds for Targeting Hypoxia-Associated Genes in Preeclampsia . Tropical Journal of Natural Product Research (TJNPR), 9(5), 2177 – 2182. https://doi.org/10.26538/tjnpr/v9i5.43

References

Lawless L, Qin Y, Xie L, Zhang K. Trophoblast Differentiation: Mechanisms and Implications for Pregnancy Complications. Nutrients. 2023; 15(16):3564-3585. doi: 10.3390/nu15163564.

Mukherjee I, Dhar R, Singh S, Sharma JB, Nag TC, Mridha AR, Jaiswal P, Biswas S, Karmakar S. Oxidative stress-induced impairment of trophoblast function causes preeclampsia through the unfolded protein response pathway. Sci Rep. 2021; 11(1):18415-18435.

Velegrakis A, Kouvidi E, Fragkiadaki P, Sifakis S. Predictive value of the sFlt‑1/PlGF ratio in women with suspected preeclampsia: An update (Review). Int J Mol Med. 2023; 52(4):89-107. doi: 10.3892/ijmm.2023.5292.

Jena MK, Sharma NR, Petitt M, Maulik D, Nayak NR. Pathogenesis of Preeclampsia and Therapeutic Approaches Targeting the Placenta. Biomolecules. 2020; 10(6):953-978. doi: 10.3390/biom10060953

Pintye D, Sziva RE, Mastyugin M, Young BC, Jacas S, Török M, Salahuddin S, Jagtap P, Southan GJ, Zsengellér ZK. A Novel Dual-Function Redox Modulator Relieves Oxidative Stress and Anti-Angiogenic Response in Placental Villus Explant Exposed to Hypoxia-Relevance for Preeclampsia Therapy. Biology (Basel). 2023; 12(9):1229-1241. doi: 10.3390/biology12091229.

Chen J, Han TL, Zhou X, Baker P, Shao Y, Zhang H. Metabolic disparities of different oxidative stress‑inducing conditions in HTR8/SVneo cells. Mol Med Rep. 2020; 21(2):540-548. doi: 10.3892/mmr.2019.10861.

Liu B, Wang X, Wu N, Liu F, Rao H. Hub Genes Involved in the Progression of Nonalcoholic Fatty Liver Disease to Hepatocellular Carcinoma. Curr Med Chem. 2024; 31:1-19. doi: 10.2174/0109298673288887240212065116

Hossen MA, Reza MS, Rana MM, Hossen MB, Shoaib M, Mollah MNH, Han C. Identification of most representative hub-genes for diagnosis, prognosis, and therapies of hepatocellular carcinoma. Chin Clin Oncol. 2024; 13(3):32-52. doi: 10.21037/cco-23-151.

Founds SA, Conley YP, Lyons-Weiler JF, Jeyabalan A, Hogge WA, Conrad KP. Altered global gene expression in first trimester placentas of women destined to develop preeclampsia. Placenta. 2009; 30(1):15-24. doi: 10.1016/j.placenta.2008.09.015.

Sitras V, Paulssen RH, Grønaas H, Leirvik J, Hanssen TA, Vårtun A, Acharya G. Differential placental gene expression in severe preeclampsia. Placenta. 2009; 30(5):424-433. doi: 10.1016/j.placenta.2009.01.012.

Perlman BE, Merriam AA, Lemenze A, Zhao Q, Begum S, Nair M, Wu T, Wapner RJ, Kitajewski JK, Shawber CJ, Douglas NC. Implications for preeclampsia: hypoxia-induced Notch promotes trophoblast migration. Reproduction. 2021 May 14;161(6):681-696. doi: 10.1530/REP-20-0483.

Irwanto EL, Darwin E, Donel S, Tjong DH. Concentrations of Soluble FMS-Like Tyrosine Kinase 1 and Placental Growth Factor Vary between Early and Late-onset Preeclampsia. Trop J Nat Prod Res. 2022; 6(3):299-302. doi.org/10.26538/tjnpr/v6i3.2

Ożarowski M, Karpiński TM, Szulc M, Wielgus K, Kujawski R, Wolski H, Seremak-Mrozikiewicz A. Plant Phenolics and Extracts in Animal Models of Preeclampsia and Clinical Trials-Review of Perspectives for Novel Therapies. Pharmaceuticals (Basel). 2021; 14(3):269-290. doi: 10.3390/ph14030269.

Dwira S, Tedjo A, Dharmawan MA, Erlina L, Fadilah Fadilah. Differentially Expressed Genes, Molecular Docking, Molecular Dynamic Analysis Revealing the Potential of Compounds in Zingiber officinale Roscoe as Inhibitors of TP53-regulating Kinase (TP53RK) that Influence the p53 Signaling Pathway Related to Apoptosis and Cell Cycle.Trop J Nat Prod Res. 2024; 8(8):8007 –8013. doi.org/10.26538/tjnpr/v8i8.12

Demšar J, Curk T, Erjavec A, Gorup C, Hocevar T, Milutinovic M, Možina M, Polajnar M, Toplak M, Starič A, Štajdohar A, Umek L, Žagar L, Žbontar J, Žitnik M, Zupan B. Orange: Data Mining Toolbox in Python. J Mach Learn Res. 2013; 14:2349–2353.

Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 2010; 38:D355–D360.

Xie Z, Bailey A, Kuleshov MV, Clarke DJB., Evangelista JE, Jenkins SL, Lachmann A, Wojciechowicz ML, Kropiwnicki E, Jagodnik KM, Jeon M, Ma’ayan A.Gene set knowledge discovery with Enrichr. Current Protocols. 2021; 1(3):e90-174. doi: 10.1002/cpz1.90

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13(11):2498-2504. doi: 10.1101/gr.1239303.

Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021; 49(D1):D1388-D1395. doi: 10.1093/nar/gkaa971.

Velankar S, Burley SK, Kurisu G, Hoch JC, Markley JL. The Protein Data Bank Archive. Methods Mol Biol. 2021; 2305:3-21. doi: 10.1007/978-1-0716-1406-8_1.

Bitencourt-Ferreira G, de Azevedo WF Jr. Molegro Virtual Docker for Docking. Methods Mol Biol. 2019; 2053:149-167. doi: 10.1007/978-1-4939-9752-7_10.

Tuccinardi T, Poli G, Romboli V, Giordano A, Martinelli A. Extensive consensus docking evaluation for ligand pose prediction and virtual screening studies. J Chem Inf Model. 2014; 54(10):2980-2986. doi: 10.1021/ci500424n.

Cieza RJ, Golob JL, Colacino JA, Wobus CE. Comparative Analysis of Public RNA-Sequencing Data from Human Intestinal Enteroid (HIEs) Infected with Enteric RNA Viruses Identifies Universal and Virus-Specific Epithelial Responses. Viruses. 2021; 13(6):1059. doi: 10.3390/v13061059.

Shibuya M. Involvement of Flt-1 (VEGF receptor-1) in cancer and preeclampsia. Proc Jpn Acad Ser B Phys Biol Sci. 2011; 87(4):167-178. doi: 10.2183/pjab.87.167.

Wu Y, Chen Z, Ullrich A. EGFR and FGFR signaling through FRS2 is subject to negative feedback control by ERK1/2. Biol Chem. 2003; 384(8):1215-1226. doi: 10.1515/BC.2003.134.

Sasagawa T, Nagamatsu T, Yanagisawa M, Fujii T, Shibuya M. Hypoxia-inducible factor-1β is essential for upregulation of the hypoxia-induced FLT1 gene in placental trophoblasts. Mol Hum Reprod. 2021; 27(12):1-13. doi: 10.1093/molehr/gaab065.

Luttun A, Carmeliet P. Soluble VEGF receptor Flt1: the elusive preeclampsia factor discovered? J Clin Invest. 2003; 111(5):600-602. doi: 10.1172/JCI18015.

Orofiamma LA, Vural D, Antonescu CN. Control of cell metabolism by the epidermal growth factor receptor. Biochim Biophys Acta Mol Cell Res. 2022; 1869(12):119359-119377. doi: 10.1016/j.bbamcr.2022.119359.

Hastie R, Brownfoot FC, Pritchard N, Hannan NJ, Cannon P, Nguyen V, Palmer K, Beard S, Tong S, Kaitu'u-Lino TJ. EGFR (Epidermal Growth Factor Receptor) Signaling and the Mitochondria Regulate sFlt-1 (Soluble FMS-Like Tyrosine Kinase-1) Secretion. Hypertension. 2019; 73(3):659-670. doi: 10.1161/HYPERTENSIONAHA.118.12300.

Müller W, Sticht H. A protein-specifically adapted scoring function for the reranking of docking solutions. Proteins. 2007; 67(1):98-111. doi: 10.1002/prot.21310.

Agu PC, Afiukwa CA, Orji OU, Ezeh EM, Ofoke IH, Ogbu CO, Ugwuja EI, Aja PM. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci Rep. 2023; 13(1):13398-13416. doi: 10.1038/s41598-023-40160-2.