Ameliorative Effects of Daniellia oliveri Leaf Extracts on Streptozotocin-Nicotinamide-Induced Type II Diabetes in Wistar Rats doi.org/10.26538/tjnpr/v5i6.30

Main Article Content

Sherif B. Adeyemi
Luqman A. Quadri
Ramar Krishnamurthy

Abstract

Diabetes mellitus is becoming more prevalent, and well-known conventional therapies reportedly have adverse effects. Hence, in streptozotocin-nicotinamide-induced type II diabetic mice, the therapeutic efficacy and haematological implication of administering organic extracts of Daniellia oliveri leaf (Do) were investigated. The diabetic rats were treated with 250mg/kg body weight of organic extracts of D. oliveri obtained by cold macerations in diethyl ether, ethanol, ethyl acetate, and n-hexane and 10 mg/kg (metformin) daily for 14 days after being induced with a single dose of 60 mg/kg and 110 mg/kg body weight of streptozotocin and nicotinamide, respectively. Our study revealed that treatment with metformin and D. oliveri organic extracts significantly reduced elevated blood glucose levels and reversed the increased glucose-6-phosphate dehydrogenase (G6PD) and glycosylated haemoglobin values. Hepatic glucose concentrations, white blood cells (WBC), packed cell volumes (PCV), haemoglobin (Hb), and red blood cells (RBC) increased after the induction of diabetes were reduced following D. oliveri extracts treatment. In addition, the activities of glucose-6-phosphatase and neutrophil concentration were increased, while blood lymphocyte levels were significantly reduced in all groups except for the diabetic non treated group. Thus, this study suggests that while all solvent extracts of D. oliveri leaf were efficient in treating diabetes, the ethanol extract stands out as an excellent candidate. Additionally, the various solvent extracts studied are potential candidates for blood-boosting and may also aid in immune system enhancement. 

Article Details

How to Cite
Adeyemi, S. B., Quadri, L. A., & Krishnamurthy, R. (2021). Ameliorative Effects of Daniellia oliveri Leaf Extracts on Streptozotocin-Nicotinamide-Induced Type II Diabetes in Wistar Rats: doi.org/10.26538/tjnpr/v5i6.30. Tropical Journal of Natural Product Research (TJNPR), 5(6), 1158–1165. Retrieved from https://tjnpr.org/index.php/home/article/view/642
Section
Articles
Author Biography

Sherif B. Adeyemi, Ethnobotany Unit, Department of Plant Biology, University of Ilorin, Ilorin, Nigeria

C.G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Gujarat State, India

References

Ogurtsova K, da Rocha Fernandes J, Huang Y, Linnenkamp U, Guariguata L, Cho NH, Cavan D, Shaw J, Makaroff L. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017; 128:40-50.

American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2013; 36(1):67-74.

Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, Malanda B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018; 138:271-281.

International Diabetes Federation. IDF Diabetes Atlas. IDF, 2019.

Arumugam G, Manjula P, Paari N. A review: Anti diabetic medicinal plants used for diabetes mellitus. J Acute Dis. 2013; 2(3):196-200.

Maraschin JdF. Classification of diabetes. In: Ahmad SI, editor. Diabetes. Adv Exp Med Biol. 771. New York, NY: Springer; 2013. 12-9 p.

Lee Y, Berglund ED, Wang M-y, Fu X, Yu X, Charron MJ, Burgess SC, Unger RH. Metabolic manifestations of insulin deficiency do not occur without glucagon action. Proc Natl Acad Sci. 2012; 109(37):14972-14976.

Zaid H, Antonescu CN, Randhawa VK, Klip A. Insulin action on glucose transporters through molecular switches, tracks and tethers. Biochem J. 2008; 413(2):201-215.

Lemieux I. Reversing Type 2 Diabetes: The Time for Lifestyle Medicine Has Come! Nutr. 2020;12:1974.

Marín-Peñalver JJ, Martín-Timón I, Sevillano-Collantes C, del Cañizo-Gómez FJ. Update on the treatment of type 2 diabetes

mellitus. World J Diabetes. 2016;7(17):354.

Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020; 83(3):770-803.

Salehi B, Ata A, Kumar NVA, Sharopov F, Ramírez-Alarcón K, Ruiz-Ortega A, Ayatollahi SA, Fokou PVT, Kobarfard F, Zakaria ZA, Iriti M, Taheri Y, Martorell M, Sureda A, Setzer WN, Durazzo A, Lucarini M, Santini A, Capasso R, Ostrander EA, Atta-ur-Rahman, Choudhary MI, Cho WC, Sharifi-Rad J. Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomol. 2019; (10):551.

Wasana KGP, Attanayake AP, Weerarathna TP, Jayatilaka KAPW. Efficacy and safety of a herbal drug of Coccinia grandis (Linn.) Voigt in patients with type 2 diabetes mellitus: A double blind randomized placebo controlled clinical trial. Phytomed. 2021; 81:153431.

De la Estrella M, Aedo C, Mackinder B, Velayos M. Taxonomic Revision of Daniellia (Leguminosae: Caesalpinioideae). Syst Bot. 2010; 35(2):296-324.

Bhat R, Etejere E, Oladipo V. Ethnobotanical studies from central Nigeria. Econ Bot. 1990; 44(3):382-390.

Iwueke AV and Nwodo OFC. Antihyperglycaemic effect of aqueous extract of Daniella oliveri and Sarcocephalus latifolius

roots on key carbohydrate metabolic enzymes and glycogen in experimental diabetes. Biokemistri. 2008;20(2):63-70.

Atolani O, Olatunji GA. Chemical composition, antioxidant and cytotoxicity potential of Daniellia oliveri (Rolfe) Hutch. & Dalz. Turk J Pharm Sci. 2016; 13(1):41-46.

Nwaeze C and Abarikwu P. Antimicrobial activity of certain medicinal plants used in traditional medicine in Nigeria. Nig J Microbiol. 2006; 6(12):32-40.

Beppe GJ, Kenko Djoumessie LB, Keugong Wado E, Ngatanko Abaïssou HH, Nkwingwa BK, Damo Kamda JL, Nhouma RR, Foyet HS. Aqueous Root Bark Extract of Daniellia oliveri(Hutch. & Dalz.)(Fabaceae) Protects Neurons against Diazepam-Induced Amnesia in Mice. Evid-Based Compl Altern Med. 2020; 2020:1-9.

Shauibu G, Abu AH, Agwu EO, Ehile V, Ezeudo ZE, Ogedemgbe B, Peter S. Effects of Daniella Oliveri Aqueous Leave Extract on Blood Glucose, Haematological and Biochemical Values in Streptozotocin-Induced Type 2 Diabetes in Male Albino Rats. Vom J Vet Sci. 2018;13(1):81-87.

Farswan M, Mazumder PM, Percha V. Protective effect ofCassia glauca Linn. on the serum glucose and hepatic enzymes level in streptozotocin induced NIDDM in rats. Indian J Pharmacol. 2009; 41(1):19-22.

Saidu A, Mann A, Onuegbu C. Phytochemical screening and hypoglycemic effect of aqueous Blighia sapida root bark extract on normoglycemic albino rats. Br J Pharm Res. 2012; 2(2):89-97.

Masiello P. Animal models of type 2 diabetes with reduced pancreatic β-cell mass. Int J Biochem Cell Biol. 2006; 38(5-6):873-893.

Diehl KH, Hull R, Morton D, Pfister R, Rabemampianina Y, Smith D, Vidal JM, Vorstenbosch CVD. A good practice guide to the administration of substances and removal of blood, including routes and volumes. J Appl Toxicol. 2001; 21(1):15-23.

Jalil AMM, Ismail A, Pei CP, Hamid M, Kamaruddin SHS. Effects of cocoa extract on glucometabolism, oxidative stress, and antioxidant enzymes in obese-diabetic (Ob-db) rats. J Agric Food Chem. 2008; 56(17):7877-7884.

Brown BA. Hematology: Principles and Procedures. 2nd ed. Philadelphia, USA: Lea & Febiger; 1976. 56-58 p.

Hewitt SG. Manual for Veterinary Investigation, hematology and Laboratory techniques. 3rd ed. Bulletin of Ministry of Agric. Fishery, Food and Hematology. 1984. 72-100 p.

Schalm OW, Jain NC, Carroll EJ. Veterinary hematology: Lea & Febiger.; 1975. 807 p.

Webster HV, Bone AJ, Webster KA, Wilkin TJ. Comparison of an enzyme-linked immunosorbent assay (ELISA) with a radioimmunoassay (RIA) for the measurement of rat insulin. J Immunol Meth. 1990;134(1):95-100.

Hikaru K and Toshitsugu O. Pathological occurrence of glucose-6-phosphatase in serum in liver diseases. Clin Chim Acta. 1959; 4(4):554-561.

Ells HA and Kirkman H. A colorimetric method for assay of erythrocytic glucose-6-phosphate dehydrogenase. Proc Exp Biol Med. 1961;106(3):607-609.

Gupta R and Sharma AK. Anti-hyperglycemic activity of aqueous extracts of some medicinal plants on wistar rats. J Diabetes Metab. 2017;8(752):000752.

Osuntokun OT, Fasusi OA, Ogunmodede AF, Thonda AO, Oladejo BO, Yusuf-Babatunde AM, Ige OO. Phytochemical Composition and Antimicrobial Activity of Daniella oliveriextracts on selected clinical microorganisms. Int J Biochem Res Rev. 2016;14(1):1-13.

Kilpatrick ES, Bloomgarden ZT, Zimmet PZ. Is haemoglobin A1c a step forward for diagnosing diabetes? BMJ. 2009; 339.

Sherifali D, Nerenberg K, Pullenayegum E, Cheng JE, Gerstein HC. The effect of oral antidiabetic agents on A1C levels: a systematic review and meta-analysis. Diab Care. 2010;33(8):1859-1864.

Ho H-Y, Cheng M-l, Chiu DT-Y. Glucose-6-phosphate dehydrogenase–from oxidative stress to cellular functions and degenerative diseases. Redox Rep. 2007;12(3):109-118.

Scott MD, Zuo L, Lubin BH, Chiu DT-Y. NADPH, not glutathione, status modulates oxidant sensitivity in normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes. Blood. 1991;77(9):2059-2064.

Wright Jr E, Scism‐Bacon J, Glass L. Oxidative stress in type 2 diabetes: the role of fasting and postprandial glycaemia. Int J Clin Pract. 2006; 60(3):308-314.

Halliwell B. Role of free radicals in the neurodegenerative diseases. Drugs Aging. 2001;18(9):685-716.

Arathi G and Sachdanandam P. Therapeutic effect ofSemecarpus anacardium Linn. nut milk extract on carbohydrate metabolizing and mitochondrial TCA cycle and respiratory chain enzymes in mammary carcinoma rats. J Pharm Pharmacol. 2003; 55(9):1283-1290.

Wilcox G. Insulin and insulin resistance. Clin Biochem Rev. 2005; 26(2):19.

Ali MD, Paul S, Tanvir EM, Hossen MD, Rumpa N-EN, Saha M, Bhoumik NC, Islam A, Hossain MD, Alam N. Antihyperglycemic, antidiabetic, and antioxidant effects of Garcinia pedunculata in rats. Evid-Based Compl Altern Med. 2017; 2017:1-15.

Rajagopal K and Sasikala K. Antihyperglycaemic and antihyperlipidaemic effects of Nymphaea stellata in alloxaninduced diabetic rats. Singapore Med J. 2008; 49(2):137-141.

Ashafa AOT, Yakubu MT, Grierson DS, Afolayan AJ. Effects of aqueous extract from the leaves of Chrysocoma ciliata L. on some biochemical parameters of Wistar rats. Afr J Biotechnol. 2009;8(8):1425-1430.

Oyedemi S, Yakubu M, Afolayan A. Antidiabetic activities of aqueous leaves extract of Leonotis leonurus in streptozotocin

induced diabetic rats. J Med Plant Res. 2011; 5(1):119-125.

Arun GS and Ramesh KG. Improvement of insulin sensitivity by perindopril in spontaneously hypertensive and streptozotocin-diabetic rats. Indian J Pharmacol. 2002; 34(3):156-164.

Ganong WF. Review of medical physiology. 20th ed. New York: Lange Medical Books/ McGraw Hill Companies Inc.; 1995. 500-515 p.

Grossmann A, Lenox J, Ren HP, Humes J, Forstrom J, Kaushansky K, Sprugel K. Thrombopoietin accelerates platelet, red blood cell, and neutrophil recovery in myelosuppressed mice. Exp Hematol. 1996; 24(10):1238-1246.

Cheeke PR. Natural toxicants in feeds, forages, and poisonous plants. Danville: Interstate Publishers, Inc., PO Box 50.; 1998.

Malomo S, Adebayo J, Olorunniji F. Modulatory effect of vitamin E on some haematological parameters in dihydroartemisinin-treated rats. Trop J Health Sci. 2002; 9:15-20.

Guyton AC and Hall JE. Textbook of Medical physiology. 11th ed. Philadelphia: W.B. Saunders Company; 2006. 382-401 p.

Periayah MH, Halim AS, Saad AZM. Mechanism action of platelets and crucial blood coagulation pathways in hemostasis. Int J Hematol Oncol Stem Cell Res. 2017;11(4):319-327.