Chemical Compositions and Anticancer Activity of Yemeni Plant Flemingia grahamiana Wight & Arn. and Myrtus communis L. doi.org/10.26538/tjnpr/v5i5.14

Main Article Content

Latifa N. A. Abdulqawi
Atheruddin Quadri
Sehbanul Islam
Manas K. Santra
Mazahar Farooqui

Abstract

Cancer remains one of the world's leading causes of death so, there is considerable scientific interest in the continuing discovery of new anticancer products from natural sources. In the present study chemical composition of methanol extracts of F. grahamiana and M. communis was assessed by Gas chromatography-mass spectrometry (GC-MS). In the GC-MS analysis of methanol extracts, 21 phytochemical compounds were identified in F. grahamiana, and 20 compounds in M. communis. The major constituents in F. grahamiana were Cyclohexasiloxane, dodecamethyl- (21.24%), Benzoic acid, 2-(dimethylamino) ethyl ester (11.79%), and Cycloheptasiloxane, tetradecamethyl (11.06%), and in M. communis were Phenol, 3,4-dimethoxy-(24.41%), 3-Buten-2-one, 4-(2,2,6-trimethyl-7-oxabicyclo [4.1.0]hept-1-yl)- (17.44%), and 2-Propanamine,N-(1-methylethyl)-N-nitroso-(8.92%). Further, the anticancer activity of methanol and aqueous extracts of these plants was estimated against MCF-7 cell lines by the MTT method In vitro. Extracts showed a potent anticancer effect in MCF-7 cells. The highest anticancer activity was recorded of aqueous and methanol extracts of M. communis with IC50 20.49 ± 0.29 and 22.10 ± 0.22 µg/ml, respectively. But extracts F. grahamiana showed moderate anticancer activity and need concentrations of more than 25 µg/ml to inhibit the growth of 50 % of cells. Our study suggests a promising potential for these plants, as anticancer. However, further studies including pharmacological evaluation, and in vivo anticancer activity are required.

Article Details

How to Cite
Abdulqawi, L. N. A., Quadri, A., Islam, S., Santra, M. K., & Farooqui, M. (2021). Chemical Compositions and Anticancer Activity of Yemeni Plant Flemingia grahamiana Wight & Arn. and Myrtus communis L.: doi.org/10.26538/tjnpr/v5i5.14. Tropical Journal of Natural Product Research (TJNPR), 5(5), 877-882. https://tjnpr.org/index.php/home/article/view/615
Section
Articles
Author Biographies

Latifa N. A. Abdulqawi, Department of Zoology, Maulana Azad Collage, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad - 431001, Maharashtra, India

Department of biology, Aden University, Aden, Yemen

Sehbanul Islam, National Centre for Cell Science, NCCS Complex, Ganeshkhind Road, Pune, Maharashtra-411007, India

Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra- 411007, India

References

Tretiakova I, Blaesius D, Maxia L, Wesselborg S, SchulzeOsthoff K, Cinatl J, Michaelis M, Werz O. Myrtucommulone from Myrtus communis induces apoptosis in cancer cells via the mitochondrial pathway involving caspase-9. Apoptosis. 2008; 13(1):119-131.

Chanda S and Nagani K. In vitro and in vivo methods for anticancer activity evaluation and some Indian medicinal plants possessing anticancer properties: an overview. J Pharmacogn Phytochem. 2013; 2(2):140-152.

Gumula I. Phytochemical Investigation of Three Leguminosae Plants for Cancer Chemopreventive Agents.PhD Thesis. University of Nairobi. 2014; 3 p.

Solowey E, Lichtenstein M, Sallon S, Paavilainen H, Solowey E, Lorberboum-Galski H. Evaluating medicinal plants for anticancer activity. Scientific World, Inc. 2014; 2014:1-12.

Gordaliza M. Natural products as leads to anticancer drugs. Clin Transl Oncol. 2007; 9(12):767-776.

Dantu AS, Shankarguru P, Ramya DD, Vedha HB. Evaluation of in vitro anticancer activity of hydroalcoholic extract of Tabernaemontana divaricata. Asian J Pharm Clin Res. 2012; 5(3):59-61.

Newman DJ, Cragg GM, Snader KM. Natural products as sources of new drugs over the period 1981-2002. J Nat Prod. 2003; 66 (7):1022-1037.

Fleurentin J, Mazars G, Pelt JM. Cultural background of the medicinal plants of Yemen. J Ethnopharmacol. 1983; 7(2):183-203.

Mothana RA, Lindequist U, Gruenert R, Bednarski PJ. Studies of the in vitro anticancer, antimicrobial and antioxidant potentials of selected Yemeni medicinal plants from the island Soqotra. BMC Compl Altern Med. 2009; 9(7):1-11.

Al-Fatimi M, Wurster M, Schröder G, Lindequist U. Antioxidant, antimicrobial and cytotoxic activities of selected medicinal plants from Yemen. J Ethnopharmacol. 2007; 111(3):657-666.

Mothana RA, Kriegisch S, Harms M, Wende K, Lindequist U. Assessment of selected Yemeni medicinal plants for their in vitro antimicrobial, anticancer, and antioxidant activities. Pharm Biol. 2011; 49(2):200-210.

Abdulqawi LN and Quadri SA. In-vitro antibacterial activities of extracts of Yemeni plants Myrtus communis l. And Flemingia grahamiana wight & arn. IJPSR. 2021; 12(2):956-962.

Abdulqawi LN and Quadri SA. Antioxidant Activity of Yemeni Plants, Myrtus communis L. and Flemingia grahamiana Wight & Arn. IJPPR Hum. 2020; 17(4):806-811.

Harborne JB. Methods of Separation. Phytochemical Methods; A Guide to Modern Techniques of Plant Analysis. Springer (India) Pvt. Ltd, New Delhi. (Edn 3). 2009; 11-19p.

Arora M, Mahajan A, Sembi JK. Essential oils analysis of pseudobulbs of Crepidium acuminatum (D. Don) Szlach by GC-MS. Asia Pac J Pub Health. 2017; 4(3):198-204.

Anburaj G, Marimuthu M, Rajasudha V, Manikandan R. In vitro anti-cancer activity Tecoma stans against human breast cancer yellow elder (Tecoma stans). J Pharmacogn Phytochem. 2016; 5(5):331-334.

Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983; 65(1-2):55-63.

Gardeli C, Vassiliki P, Athanasios M, Kibouris T, Komaitis M. Essential oil composition of Pistacia lentiscus L. and Myrtus communis L.: Evaluation of antioxidant capacity of methanolic extracts. Food Chem. 2008; 107(3):1120-1130.

Qader KO, Al-Saadi SA, Al-Saadi TA. Chemical composition of Myrtus communis L. (Myrtaceae) fruits. Int J Appl Sci Biotechnol. 2017; 12(3):1-8.

Shah RA, Khan S, Rehman W, Vakil M. Phytochemical evaluation of Withanolide-A in ashwagandha roots from different climatic regions of India. Int J Curr Res Biosci Plantbiol. 2016; 3:114-120.

Fatima Mary AP and Sagaya GR. Phytochemical screening and GC-MS analysis in ethanolic leaf extracts of Ageratum conyzoides (L.). World J Pharm Med Res. 2016; 5(7):1019-1029.

Phuong TV, Lam VH, Diep CN. Bioactive Compounds from Marine Streptomyces Sp. by Gas ChromatographyMass Spectrometry. Pharm Chem J. 2018; 5(1):196-203.

Kumar D, Karthik M, Rajakumar R. GC-MS analysis of bioactive compounds from ethanolic leaves extract of Eichhornia crassipes (Mart) Solms. And their pharmacological activities. Pharm Innov J. 2018; 7(8):459-462.

Fidyt K, Fiedorowicz A, Strządała L, Szumny A. β‐caryophyllene and β‐caryophyllene oxide—natural compounds of anticancer and analgesic properties. Cancer Med. 2016; 5 (10):3007-17.

Selestino Neta MC, Vittorazzi C, Guimarães AC, Martins JD, Fronza M, Endringer DC, Scherer R. Effects of β-caryophyllene and Murraya paniculata essential oil in the murine hepatoma cells and in the bacteria and fungi 24-h time–kill curve studies. Pharm Biol. 2017; 55(1):190-197.

Dahham SS, Tabana YM, Iqbal MA, Ahamed MB, Ezzat MO, Majid AS, Majid AM. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules. 2015; 20(7):11808-29.

Sitarek P, Rijo P, Garcia C, Skała E, Kalemba D, Białas AJ, Szemraj J, Pytel D, Toma M, Wysokińska H, Śliwiński T. Antibacterial, anti-inflammatory, antioxidant, and antiproliferative properties of essential oils from hairy and normal roots of Leonurus sibiricus L. and their chemical composition. Oxid Med Cell Longev. 2017; 2017:1- 9.

Krishnamoorthy K and Subramaniam P. Phytochemical profiling of leaf, stem, and tuber parts of Solena amplexicaulis (Lam.) Gandhi using GC-MS. Int sch res notices. 2014; 2014:1-13.

Singh CB, Chanu SB, Kh L, Swapana N, Cantrell C, Ross SA. Chemical composition and biological activity of the essential oil of rhizome of Zingiber zerumbet (L.) Smith. J Pharmacogn Phytochem. 2014; 3(3):130-133.

Kumar MH, Prabhu K, Rao MR, Sundaram RL, Shil S, Kumar SA. The GC MS study of one Ayurvedic medicine, Vasakadyaristam. Res J Pharm Technol. 2019; 12(2):569-573.

Romeilah RM. Chemical compositions, antioxidant, anticancer activities and biological effects of Myrtus communis L. and Origanum vulgare essential oils. Asian J Biochem. 2016; 11(2):104-117.

Raghava S and Umesha S. Antibrucellosis Activity of Medicinal Plants from Western Ghats and Characterization of Bioactive Metabolites. Pharmacogn J. 2017; 9(6):122-128.

Konovalova O, Gergel E, Herhel V. GC-MS Analysis of bioactive components of Shepherdia argentea (Pursh.) Nutt. from Ukrainian Flora. Pharm Innov. 2013; 2(6, Part A):7-12.

Hugar AL, Kanjikar AP, Londonkar RL. Cyclamen persicum: Methanolic Extract Using Gas ChromatographyMass Spectrometry (GC-MS) Technique. Int J Pharm Qual Assur. 2017; 8(04):200-213.

Romeilah RM. Chemical compositions, antioxidant, anticancer activities and biological effects of Myrtus communis L. and Origanum vulgare essential oils. Asian J Biochem. 2016; 11(2):104-117.

Hrubik JD, Kaišarević SN, Glišić BD, Jovin EĐ, MimicaDukić NM, Kovačević RZ. Myrtus comunis and Eucalyptus camaldulensis cytotoxicity on breast cancer cells. Zbornik Matice srpske za prirodne nauke. 2012; (123):65-73.

Angelova S, Gospodinova Z, Krasteva M, Antov G, Lozanov V, Markov T. Antitumor activity of Bulgarian herb Tribulus terrestris L. on human breast cancer cells. J Bio Sci Biotech. 2013; (1):25-32.

Gumula I, Alao JP, Ndiege IO, Sunnerhagen P, Yenesew A, Erd lyi M. Cytotoxic and antioxidant constituents of the leaves of Flemingia grahamiana. J Nat Prod. 2014; 77:2060-2067.

Nurcahyanti ADR and Hidayat T. Phylogenetic position of three Sumatran medicinal plants predicted with anticancer activity and their relations to Withania somnifera based on internal transcribed species region. Int Res J Pharm. 2018; 12(5):711-716.