In Vitro Evaluation of Soursop Leaf (Annona muricata L) Ethanol Extract against Development and Proliferation of 4T1 Breast Cancer Cell

Main Article Content

Ni W. Tianing
I. Wayan Sumardika
Ida AD Wiryanthini
Agung W. Indrayani
Dina Fatmawati
Gregorius W. Thongiratama
Wahyu Widyasanti

Abstract

Breast cancer, the most prevalent cancer among women, is on the rise, with many cases being diagnosed at advanced stages with metastasis. Traditional treatments, such as surgery, chemotherapy, and radiation, are associated with significant side effects, leading many patients to seek alternative treatments using natural ingredients. Soursop leaves contain annonaceous acetogenin, which are compounds reported to inhibit cancer cell growth and development. While previous studies have demonstrated their potential as an anticancer agent, their role in metastasis remains unclear. This study aims to examine the effects of ethanol extract from soursop leaves on breast cancer metastasis using molecular biomarkers including MMP-9, VEGF, HIF-1 expression, and angiogenesis. Soursop leaves were extracted with 96% ethanol and tested on 4T1 breast cancer cells using the MTT assay. The results showed an IC50 value of 117.87 µg/ml, with VEGF and HIF-1 levels decreasing at higher extract concentrations (R² = 0.834). This study concluded that ethanol extract from soursop leaves effectively reduces 4T1 breast cancer cell viability and acts as an antioxidant. These findings support the potential of soursop leaves as a beneficial alternative treatment for managing breast cancer.

Downloads

Article Details

How to Cite
Tianing, N. W., Sumardika, I. W., Wiryanthini, I. A., Indrayani, A. W., Fatmawati, D., Thongiratama, G. W., & Widyasanti, W. (2025). In Vitro Evaluation of Soursop Leaf (Annona muricata L) Ethanol Extract against Development and Proliferation of 4T1 Breast Cancer Cell. Tropical Journal of Natural Product Research (TJNPR), 9(3), 921-924. https://doi.org/10.26538/tjnpr/v9i3.5
Section
Articles

References

1. Gupta V, Mohapatra S, Mishra H, Farooq U, Kumar K, Ansari M, et al. Nanotechnology in Cosmetics and Cosmeceuticals—A Review of Latest Advancements. Gels. 2022 10;8(3):173.

2. Salvioni, L., Morelli, L., Ochoa, E., Labra, M., Fiandra, L., Palugan, L., Prosperi, D., and Colombo, M. The emerging role of nanotechnology in skincare. Adv Colloid Interface Sci. 2021 Jul;293:102437.

3. Telang P. Vitamin C in dermatology. Indian Dermatol Online J. 2013;4(2):143.

4. Caritá AC, Fonseca-Santos B, Shultz JD, Michniak-Kohn B, Chorilli M, Leonardi GR. Vitamin C: One compound, several uses. Advances for delivery, efficiency and stability. Nanomedicine Nanotechnol Biol Med. 2020;24:102117.

5. Rusminingsih E, Susanto H, Afifah DN, Martien R, Subagyo HW. Effectiveness of Moringa oleifera Nanoparticles (Self Nano Emulsifying Drug Delivery System) on Insulin Resistance in the Prediabetes Rattus norvegicus Model. Trop J Nat Prod Res [Internet]. 2023 Dec 1 [cited 2024 Feb 1];7(11). Available from: https://tjnpr.org/index.php/home/article/view/3005

6. Opatha SAT, Titapiwatanakun V, Chutoprapat R. Transfersomes: A Promising Nanoencapsulation Technique for Transdermal Drug Delivery. Pharmaceutics. 2020 9;12(9):855.

7. Bhasin B, Londhe VY. An Overview Of Transfersomal Drug Delivery. Int J Pharm Sci Res. 2018;9(6).

8. Samundre P, Dangi S, Patidar T, Shende SM. A Review On Topical Gel. 2020;8(4).

9. Safitri FI, Nawangsari D, Febrina D. Overview: Application of Carbopol 940 in Gel: In: Proceedings of the International Conference on Health and Medical Sciences (AHMS 2020) [Internet]. Yogyakarta, Indonesia: Atlantis Press; 2021 [cited 2024 Feb 1]. Available from: https://www.atlantis-press.com/article/125951906

10. Magbool FF, Elnima EI. Design, Formulation, And Evaluation Of Carbopol 940 And Xanthan Gum As Gel Bases For Oral Local Drug Delivery For Oral Mucosal Infectious Diseases. 2018;5(10):9–21.

11. Rowe R, Sheskey PJ, Quinn ME. Handbook of Pharmaceutical Exipients. Sixth Edition. Washington USA: Pharmaceutical Press and American Pharmaceutical Association; 2009.

12. Ferreira ESC, Voroshylova IV, Koverga VA, Pereira CM, Cordeiro MNDS. New Force Field Model for Propylene Glycol: Insight to Local Structure and Dynamics. J Phys Chem B. 2017 7;121(48):10906–109021.

13. Sopyan I, Gozali D, Sriwidodo S, Guntina R. Design-Expert Software (doe): An Application Tool for Optimization in Pharmaceutical Preparations Formulation. Int J Appl Pharm. 2022 7;55–63.

14. Al Hagbani, T., Altomare, C., Salawi, A., & Nazzal, S. D-optimal mixture design: Formulation development, mechanical characterization, and optimization of curcumin chewing gums using oppanol® B 12 elastomer as a gum-base. Int J Pharm. 2018;1–2(553):210–219.

15. Kumar RS, Pradhan M. Transferosomes: Vesicular Carrier for both Hydrophilic and Lipophilic Drugs. J Pharm Res Int. 2022 Mar 28;106–120.

16. Amnuaikit T, Limsuwan T, Khongkow P, Boonme P. Vesicular carriers containing phenylethyl resorcinol for topical delivery system; liposomes, transfersomes and invasomes. Asian J Pharm Sci. 2018;13(5):472–484.

17. Darajat NZ, Chaerunisaa A, Abdassah M. Transfersome as Topical Drug Delivery: Formulation and Characterization: Transfersome sebagai Pengiriman Obat Topikal: Formulasi dan Karakterisasi. J Farm Galen Galen J Pharm E-J [Internet]. 2023 Jan 4 [cited 2024 Feb 6]; Available from: https://bestjournal.untad.ac.id/index.php/Galenika/article/view/16030

18. Bragagni M, Mennini N, Maestrelli F, Cirri M, Mura P. Comparative study of liposomes, transfersomes and ethosomes as carriers for improving topical delivery of celecoxib. Drug Deliv. 2012;19(7):354–61.

19. Padma Prashanthini V, Sivaraman S, Kathirvelu P, Shanmugasundaram J, Subramanian V, Ramesh SS, et al. Transferosomal gel for transdermal delivery of insulin: Formulation development and ex vivo permeation study. Intell Pharm. 2023;1(4):212–6.

20. Anonym. Pharmakope Indonesia. III. Jakarta: Health Department of Republik Indonesia; 1979.

21. Ologunagba M, Azubuike C, Olanrewaju S. Extraction and Characterization of the Gum Exudate of Anacardium occidentale for its potential as an Excipient in Drug Delivery Systems. Trop J Nat Prod Reseach. 2017 9;1(2):76–83.

22. Ali S, Yosipovitch G. Skin pH: From Basic Science to Basic Skin Care. Acta Derm Venereol. 2013;93(3):261–7.

23. Jagdale S, Pawar S. Gellified Emulsion of Ofloxacin for Transdermal Drug Delivery System. Adv Pharm Bull. 2017 30;7(2):229–239.

24. SNI 06-2588-1992. Liquid synthetic detergent preparation for hand cleaning. 2019.

25. Elena O. B, Maria N. A, Michael S. Z, Natalia B. D, Alexander I. B, Ivan I. K. Dermatologic Gels Spreadability Measuring Methods Comparative Study. Int J Appl Pharm. 2022 7;164–168.

26. Arvouet-Grand A, Vennat B, Lejeune B, Pourrat A. Formulation of Propolis Extract Emulsions. I. O/W Creams Based on Non-Ionic Surfactants and Various Consistency Agents. Drug Dev Ind Pharm. 1995;21(16):1907–1915.

27. Rahmawati DA, Setiawan I. The Formulation and Physical Stability Test Of Gel Fruit Strawberry Extract (Fragaria x ananassa Duch.). 2019;2:38–46.

28. Eden WT, alighiri dante, Kasmudi Imam Supardi, Eddy Cahyono. The Mosquito Repellent Activity of the Active Component of Air Freshener Gel from Java Citronella Oil (Cymbopogon winterianus). J Parasitol Res. 2019;2020:1–5.

29. Pérez-Robles S, Matute CA, Lara JR, Lopera SH, Cortés FB, Franco CA. Effect of Nanoparticles with Different Chemical Nature on the Stability and Rheology of Acrylamide Sodium Acrylate Copolymer/Chromium (III) Acetate Gel for Conformance Control Operations. Nanomaterials. 2019 30;10(1):74.

30. Asfaw TB, Woldemariam HW, Tadesse MG, Tessema FB, Admassie ZG, Esho TB. Method optimization for the determinations of selected phytochemicals and antioxidant activities of wild Ethiopian Syzygium guineense fruit and seed under different drying conditions. Heliyon. 2023 9(6):e16227.

31. Larrea-Wachtendorff D, Del Grosso V, Ferrari G. Evaluation of the Physical Stability of Starch-Based Hydrogels Produced by High-Pressure Processing (HPP). Gels. 2022 1;8(3):152.

32. Carré P. About solvents used in the preparation of oils for cosmetic products complying with the Cosmos standard. OCL. 2021;28:16.

33. Yussof NS, Tan CP, Tan TB, Utra U, Ramli UE. Influence of Soy Lecithin and Sodium Caseinate on The Stability and in vitro Bioaccessibility of Lycopene Nanodispersion. Food Technol Biotechnol. 2023;61(1):39–50.

34. Clogston JD,, Patri AK. Zeta potential measurement. In: Characterization of Nanoparticles Intended for Drug Delivery Methods in Molecular Biology,. 2010. p. 63–70.

35. Suhail M, Fang CW, Khan A, Minhas MU, Wu PC. Fabrication and In Vitro Evaluation of pH-Sensitive Polymeric Hydrogels as Controlled Release Carriers. Gels. 2021;7(3).

36. Hooper D, Coughlan J, Mullen MR. Structural Equation Modelling: Guidelines for Determining Model Fit. 2008;

37. Hamilton DF, Ghert M, Simpson AHRW. Interpreting regression models in clinical outcome studies. Bone Jt Res. 2015 4(9):152–153.

38. Chakraborty P, Dey S, Parcha V, Bhattacharya SS, Ghosh A. Design Expert Supported Mathematical Optimization and Predictability Study of Buccoadhesive Pharmaceutical Wafers of Loratadine. BioMed Res Int. 2013;2013:1–12.

39. Dubash N, Frigaard IA. Propagation and stopping of air bubbles in Carbopol solutions. J Non-Newton Fluid Mech. 2007 ;142(1–3):123–134.

40. Wilhelm S, Kind M. On the Relation between Natural and Enforced Syneresis of Acidic Precipitated Silica. Polymers. 2014 26;6(12):2896–2911.

41. John Raven FRS. Ocean acidification due to increasing atmospheric carbon dioxide. London: Royal Society; 2005.

42. Young JA. Triethanolamine. J Chem Educ. 2004 Jan 1;81(1):24.

43. Sormin RBD, Masela A, Idris. Physicochemical properties of carrageenan originated from Lermatang Village, Southwest Maluku District. IOP Conf Ser Earth Environ Sci. 2019 1;339(1):012053.