Effectiveness of Moringa oleifera Nanoparticles (Self Nano Emulsifying Drug Delivery System) on Insulin Resistance in the Prediabetes Rattus norvegicus Model

http://www.doi.org/10.26538/tjnpr/v7i11.8

Authors

  • Esri Rusminingsih Medicine and Health Sciences Doctoral Study Program, Faculty of Medicine, Diponegoro University, Semarang, Central Java Indonesia
  • Hardhono Susanto Department of Physiology Anatomy, Faculty of Medicine, Diponegoro University, Semarang, Central Java. Indonesia
  • Diana N. Afifah Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Central Java, Indonesia
  • Ronny Martien Departement of Pharmaceutics, Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, Central Java. Indonesia
  • Hertanto Wahyu Subagyo Departement of Nutrition Consultant, Diponegoro University, Central Java, Indonesia

Keywords:

prediabetes, nanoparticles, Moringa oleifera, insulin resistance, inflammatory cytokines, HOMA-IR

Abstract

The present study aimed to investigate the effect of Moringa oleifera nanoparticles (MoNP) supplementation based on the Self Nano Emulsifying Drug Delivery System on insulin resistance in prediabetes models. Twenty-five Rattus norvegicus were split into five groups, containing five rats each: normal control group (given a standard diet), as well as a prediabetes control group and three intervention groups fed a high-fat diet for four weeks. Those with fasting blood serum (FBS) ranged betwen 100-130 mg/dL were deemed prediabetic. The intervention groups were then given MoNP at dosages of 75, 125, and 225 mg/kg bw, respectively, whereas the normal and prediabetic groups received a regular diet. FBS, fasting insulin, TNF-α, IL-6, triglycerides, and HOMA-IR were all examined after treatment. MoNP significantly reduced TNF-α, IL-6, triglycerides, and HOMA-IR levels (p<0.05). It also generated a considerable rise in insulin levels in contrast to the prediabetic control group (p<0.05). Supplementation of MoNP at the lowest dose of 75 mg/kg body weight was able to lower FBS to normal levels from 130.04 mg/dL to 97.34 mg/dL and reduce HOMA-IR from 4.20 to 3.71 (p < 0.05). The administration of MoNP can reduce inflammatory cytokines and insulin resistance in the prediabetes model.

Author Biography

Esri Rusminingsih, Medicine and Health Sciences Doctoral Study Program, Faculty of Medicine, Diponegoro University, Semarang, Central Java Indonesia

Nursing Study Program, Faculty of Health and Technology, Universitas Muhammadiyah Klaten, Central Java, Indonesia

References

Lee JH, Kim DY, Pantha R, Lee EH, Bae JH, Han E, Song DK, Kwon TK, Im SS. Identification of Pre-Diabetic Biomarkers in the Progression of Diabetes Mellitus. Biomedicines. 2022;10(1):5–10.

Huang Y, Cai X, Mai W, Li M, Hu Y. Association between prediabetes and risk of cardiovascular disease and all cause mortality: Systematic review and meta-analysis. BMJ. 2016;355.

Schlesinger S, Neuenschwander M, Barbaresko J, Lang A, Maalmi H, Rathmann W, Roden M, Herder C. Prediabetes and risk of mortality, diabetes-related complications and comorbidities: umbrella review of meta-analyses of prospective studies. Diabetologia. 2022;65(2):275–85.

Hyun MK, Park JH, Kim KH, Ahn SK, Ji SM. Incidence and risk factors for progression to diabetes mellitus: A retrospective cohort study. Int J Environ Res Public Health. 2022;19(1).

Teufel F, Seiglie JA, Geldsetzer P, Theilmann M, Marcus ME, Ebert C, Arboleda WAL, Agoudavi K, Andall-Brereton G, Aryal KK, Brian G, Bovet P, Dorobantu M, Gurung MS, Guwatudde D, Houehanou C, Houinato D, Jorgensen JMA, Kagaruki GB, et al. Body mass index and diabetes risk in fifty-seven low- and middle-income countries: a cross-sectional study of nationally representative individual-level data. Physiol Behav. 2021;176(1):100–106.

Desjardins Y, Anhe FF, Lajolo FM, Ine M. PharmaNutrition Polyphenols and type 2 diabetes : A prospective review. PharmaNutrition. 2013;28:1–10.

Kim Y, Keogh JB, Clifton PM. Polyphenols and Glycemic Control. Nutrients. 2016;2471(January):2–27.

Abdel-Hamid AAM, Firgany AEDL. Correlation between pancreatic mast cells and the low grade inflammation in adipose tissue of experimental prediabetes. Acta Histochem [Internet]. 2019;121(1):35–42. Available from: https://doi.org/10.1016/j.acthis.2018.10.005

Chen Z, Drouin-Chartier JP, Li Y, Baden MY, Manson JE, Willett WC, Voortman T, Hu FB, Bhupathiraju SN. Changes in Plant-Based Diet Indices and Subsequent Risk of Type 2 Diabetes in Women and Men: Three U.S. Prospective Cohorts. Diabetes Care. 2021;44(3):663–71.

Sun C, Zhao C, Guven EC, Simal-gandara J, Ramkumar KM, Buleu F, Tomas M, Paoli P, Wang S, Pah A, Turi V, Damian G, Dragan S, Delmas D, Dar P, Chen L, Xiao J, Portillo MP. Dietary polyphenols as antidiabetic agents : Advances and opportunities. Food Front. 2020;1(18):18–44.

Ballard CR, Maróstica MR. Health Benefits of Flavonoids [Internet]. Bioactive Compounds: Health Benefits and Potential Applications. Elsevier Inc.; 2019. 185–201 p. Available from: https://doi.org/10.1016/B978-0-12-814774-0.00010-4

Varshney R, Mishra R, Das N, Sircar D, Roy P. A comparative analysis of various flavonoids in the regulation of obesity and diabetes: An in vitro and in vivo study. J Funct Foods [Internet]. 2019;59(January):194–205. Available from: https://doi.org/10.1016/j.jff.2019.05.004

Kashyap P, Kumar S, Riar CS, Jindal N, Baniwal P, Guiné RPF, Correia PMR, Mehra R, Kumar H. Recent Advances in Drumstick (Moringa oleifera) Leaves Bioactive Compounds: Composition, Health Benefits, Bioaccessibility, and Dietary Applications. Antioxidants. 2022;11(2):1–37.

Anwer T, Safhi MM, Makeen HA, Alshahrani S, Siddiqui R, Sivakumar SM, Shaheen ES, Alam MF. Antidiabetic potential of Moringa oleifera Lam. leaf extract in type 2 diabetic rats, and its mechanism of action. Trop J Pharm Res. 2021;20(2):97–104.

Taweerutchana R, Lumlerdkij N, Vannasaeng S, Akarasereenont P, Sriwijitkamol A. Effect of Moringa oleifera Leaf Capsules on Glycemic Control in Therapy-Naïve Type 2 Diabetes Patients: A Randomized Placebo Controlled Study. Evidence-based Complement Altern Med. 2017;2017.

Gómez-Martínez S, Díaz-Prieto LE, Castro IV, Jurado C, Iturmendi N, Martín-Ridaura MC, Calle N, Dueñas M, Picón MJ, Marcos A, Nova E. Moringa oleifera leaf supplementation as a glycemic control strategy in subjects with prediabetes. Nutrients. 2022;14(1):1–15.

Chen G lin, Xu Y bing, Wu J lin, Li N, Guo M quan. Hypoglycemic and hypolipidemic effects of Moringa oleifera leaves and their functional chemical constituents. 2020;333(July).

Amjad S, Jafri A, Sharma AK, Serajuddin M. A novel strategy of nanotized herbal drugs and their delivery in the treatment of diabetes: Present status and future prospects. J Herb Med [Internet]. 2019;17–18:100279. Available from: https://doi.org/10.1016/j.hermed.2019.100279

Wanjiru J, Gathirwa J, Sauli E, Swai HS. Formulation, Optimization, and Evaluation of Moringa oleifera Leaf Polyphenol-Loaded Phytosome Delivery System against Breast Cancer Cell Lines. Molecules. 2022;27.

Dobrzynska M, Napierala M, Florek E. Flavonoid nanoparticles: A promising approach for cancer therapy. Biomolecules. 2020;10(9):1–17.

Vllasaliu D, Thanou M, Stolnik S, Fowler R. Recent advances in oral delivery of biologics: nanomedicine and physical modes of delivery Driton. Expert Opin Drug Deliv [Internet]. 2018;0(0):1–33. Available from: https://doi.org/10.1080/17425247.2018.1504017

Sprunk A, Strachan CJ, Graf A. European Journal of Pharmaceutical Sciences Rational formulation development and in vitro assessment of SMEDDS for oral delivery of poorly water soluble drugs. Eur J Pharm Sci [Internet]. 2012;46(5):508–15. Available from: http://dx.doi.org/10.1016/j.ejps.2012.04.001

Nova E. Potential of Moringa oleifera to Improve Glucose Control for the Prevention of Diabetes and Related Metabolic Alterations : A Systematic Review of Animal and Human Studies. Nutrients. 2020;12(7):1–29.

Huda N, Herowati R, Nurrochmad A. Aktivitas Fraksi-Fraksi Etanol Murbei (Morus australis Poir.) Terhadap Fungsi Hati Tikus Putih Model Hiperkolesterolemia yang Diberi Diet Tinggi Lemak. J Farm Sains Indones. 2020;3(2):28–36.

Teja PK, Mithiya J, Kate AS, Bairwa K, Chauthe SK. Herbal nanomedicines: Recent advancements, challenges, opportunities and regulatory overview. Phytomedicine [Internet]. 2022;96(April 2021):153890. Available from: https://doi.org/10.1016/j.phymed.2021.153890

Dalal L, Allaf AW, El-Zein H. Formulation and in vitro evaluation of self-nanoemulsifying liquisolid tablets of furosemide. Sci Rep [Internet]. 2021;11(1):1–10. Available from: https://doi.org/10.1038/s41598-020-79940-5

Jusril NA, Abu Bakar SI, Khalil KA, Md Saad WM, Wen NK, Adenan MI. Development and Optimization of Nanoemulsion from Ethanolic Extract of Centella asiatica (NanoSECA) Using D-Optimal Mixture Design to Improve Blood-Brain Barrier Permeability. Evidence-Based Complement Altern Med. 2022;2022:1–18.

Villarruel-López A, López-de la Mora DA, Vázquez-Paulino OD, Puebla-Mora AG, Torres-Vitela MR, Guerrero-Quiroz LA, Nuño K. Effect of Moringa oleifera consumption on diabetic rats. BMC Complement Altern Med. 2018;18(1):1–10.

Monraz-Méndez CA, Escutia-Gutiérrez R, Rodriguez-Sanabria JS, Galicia-Moreno M, Monroy-Ramírez HC, Sánchez-Orozco L, García-Bañuelos J, De la Rosa-Bibiano R, Santos A, Armendáriz-Borunda J, Sandoval-Rodríguez A. Moringa oleifera Improves MAFLD by Inducing Epigenetic Modifications. Nutrients. 2022;14(20):1–19.

Jessica N, Denny J, Riskianto R, Marcelia S, Dela R. Anti-Hyperglycemic and Anti-Inflammatory Activities of Moringa oleifera Lam Leaves Extract. Trop J Nat Prod Reasearch [Internet]. 2022;6 (6)(June):884–8. Available from: https://tjnpr.org/index.php/home/article/view/1496/2333

Owolabi MA, Ogah CO, Adebayo KO, Soremi EM. Evaluation of antidiabetic potential and biochemical parameters of aqueous pod extract of Moringa oleifera in alloxan diabetic rats. Trop J Nat Prod Res [Internet]. 2020;4(2):50–7. Available from: https://tjnpr.org/index.php/home/article/view/1025

Fattah MEA, Sobhy HM, Reda A, Abdelrazek HMA. Hepatoprotective effect of Moringa oleifera leaves aquatic extract against lead acetate – induced liver injury in male Wistar rats. Environ Sci Pollut Res. 2020;(1998).

Oguntibeju OO, Aboua GY, Omodanisi EI. Effects of Moringa oleifera on oxidative stress, apoptotic and inflammatory biomarkers in streptozotocin-induced diabetic animal model. South African J Bot [Internet]. 2019;129:354–65. Available from: https://doi.org/10.1016/j.sajb.2019.08.039

Balbaa M, El-zeftawy M. Therapeutic Screening of Herbal Remedies for the Management of Diabetes. molecules. 2021;26(22):1–18.

Tang Y, Choi EJ, Han WC, Oh M, Kim J, Hwang JY, Park PJ, Moon SH, Kim YS, Kim EK. Moringa oleifera from Cambodia Ameliorates Oxidative Stress, Hyperglycemia, and Kidney Dysfunction in Type 2 Diabetic Mice. J Med Food. 2017;20(5):502–10.

Meireles D, Gomes J, Lopes L, Hinzmann M, Machado J. A review of properties, nutritional and pharmaceutical applications of Moringa oleifera: integrative approach on conventional and traditional Asian medicine [Internet]. Vol. 20, Advances in Traditional Medicine. Springer Singapore; 2020. p. 495–515. Available from: https://doi.org/10.1007/s13596-020-00468-0

Setyawati T, Adawiyah R, Walanda RM, Riski, Chandra R. Effectiveness of moringa oleifera on triglyceride levels in diabetic wistar rats (Rattus norvegicus) induced with streptozotocin (STZ). IOP Conf Ser Earth Environ Sci. 2022;1075(1).

Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech. 2015;5(2):123–7.

Ramadon D, Im AM. Pemanfaatan Nanoteknologi dalam Sistem Penghantaran Obat Baru untuk Produk Bahan Alam (Utilization of Nanotechnology in Drug Delivery System for Natural Products). J Ilmu Kefarmasian Indones. 2016;14(2):118–27.

Jusnita N, Syurya W. Characterization of Nanoemulsion from Moringa oleifera’ Extract. J Sains Farm Klin [Internet]. 2019;6(1):16–24. Available from: file:///C:/Users/HP/Downloads/369-1167-5-PB.pdf

Teja PK, Mithiya J, Kate AS, Bairwa K, Chauthe SK. Herbal nanomedicines: Recent advancements, challenges, opportunities and regulatory overview. Phytomedicine [Internet]. 2022;96(April 2021):1–37. Available from: https://doi.org/10.1016/j.phymed.2021.153890

Nouri Z, Hajialyani M, Izadi Z, Bahramsoltani R, Farzaei MH, Abdollahi M. Nanophytomedicines for the Prevention of Metabolic Syndrome: A Pharmacological and Biopharmaceutical Review. Front Bioeng Biotechnol. 2020;8(May):1–18.

Muzumbukilwa WT, Nlooto M, Owira PMO. Hepatoprotective effects of Moringa oleifera Lam (Moringaceae) leaf extracts in streptozotocin-induced diabetes in rats. J Funct Foods [Internet]. 2019;57(December 2018):75–82. Available from: https://doi.org/10.1016/j.jff.2019.03.050

Shaukat A, Rasool U, Saeed F, Shah YA, Afzaal M. Functional assessment of Zinc oxide nanoparticle and Moringa oleifera supplementation on the male reproductive system of a diabetic rat model. Res Sq [Internet]. 2022;1–17. Available from: http://dx.doi.org/10.21203/rs.3.rs-2127236/v1%0Ahttps://www.researchsquare.com/article/rs-2127236/v1

Bhosle DD. Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) in the Diagnosis of Insulin Resistance and Prediabetes. J Med Sci Clin Res. 2016;04(09):12705–10.

Jaiswal D, Rai PK, Mehta S, Chatterji S, Shukla S, Rai DK, Sharma G, Sharma B, khair S, Watal G. Role of Moringa oleifera in regulation of diabetes-induced oxidative stress. Asian Pac J Trop Med [Internet]. 2013;6(6):426–32. Available from: http://dx.doi.org/10.1016/S1995-7645(13)60068-1

Yang B, Dong Y, Wang F, Zhang Y. Nanoformulations to enhance the bioavailability and physiological functions of polyphenols. Molecules. 2020;25(20):2–36..

Published

2023-12-01

How to Cite

Rusminingsih, E., Susanto, H., Afifah, D. N., Martien, R., & Subagyo, H. W. (2023). Effectiveness of Moringa oleifera Nanoparticles (Self Nano Emulsifying Drug Delivery System) on Insulin Resistance in the Prediabetes Rattus norvegicus Model: http://www.doi.org/10.26538/tjnpr/v7i11.8. Tropical Journal of Natural Product Research (TJNPR), 7(11), 5059–5066. Retrieved from https://tjnpr.org/index.php/home/article/view/3005