Evaluation of Plant Growth Promoting Production from Endophytic Fungi Isolated from Forage Grass and Grass Weed on in vitro propagation of Paphiopedilum callosum (Rchb.f.) Stein

Main Article Content

Jarin Poodngam
Amornpan Kaewsrinuan
Thanakorn Damsud

Abstract

Microorganisms known as endophytes inhabit plant tissues produce bioactive secondary metabolites, some of which stimulate plant growth. The objective of this research was to screen plant growth-promoting endophytic fungi isolated from the leaves, stems, and roots of Guinea grass (Panicum maximum Jacq.), Napier grass (Pennisetum purpureum Schumach.), Ruzi grass (Brachiaria ruziziensis R.Germ.), Para grass (Brachiaria mutica (Forsk.) Stapt), Pangola grass (Digitaria eriantha Steud.), and weed species such as Crowfoot grass (Dactyloctenium aegyptium (L.) Willd.), Thatch grass (Imperata cylindrica Beauv.), Gold beard grass (Chrysopogon aciculatus (Retz.) Trin.), Torpedo grass (Panicum repens Linn.), and West Indian marsh grass (Hymenachne amplexicaulis (Rudge) Nees.). Fourteen fungal isolates were evaluated for their ability to promote plant growth. Indole 3-acetic acid (IAA) synthesis was observed in all isolates, ranging from 12.70±0.04 to 64.20±0.17 µg/mL. Epichloë sp. KN03R was the isolate that made the most IAA (64.20±0.17 µg/mL), ammonia (0.24±0.02 mg/L), and a phosphate solubilization (halo zone ratio of 1.50±0.87 cm). The growth-promoting efficacy of Epichloë sp. KN03R was tested on Paphiopedilum callosum (Rchb.f.) Stein plantlets under sterile conditions for 8 weeks. The results indicated an increase in fresh weight (104.75±0.35 g/plant), plant height (3.47±0.06 cm), number of shoots (1.88±0.11 shoots/plant), number of leaves (7.98±0.34 leaves/plant), number of roots (4.32±0.40 roots/plant), and root length (3.37±0.21 cm). These results suggest that Epichloë grass endophytic fungus has the ability to promote nonhost plant growth in vitro.

Downloads

Download data is not yet available.

Article Details

How to Cite
Poodngam, J., Kaewsrinuan, A., & Damsud, T. (2025). Evaluation of Plant Growth Promoting Production from Endophytic Fungi Isolated from Forage Grass and Grass Weed on in vitro propagation of Paphiopedilum callosum (Rchb.f.) Stein. Tropical Journal of Natural Product Research (TJNPR), 9(1), 369-377. https://doi.org/10.26538/tjnpr/v9i1.47
Section
Articles

How to Cite

Poodngam, J., Kaewsrinuan, A., & Damsud, T. (2025). Evaluation of Plant Growth Promoting Production from Endophytic Fungi Isolated from Forage Grass and Grass Weed on in vitro propagation of Paphiopedilum callosum (Rchb.f.) Stein. Tropical Journal of Natural Product Research (TJNPR), 9(1), 369-377. https://doi.org/10.26538/tjnpr/v9i1.47

References

Caradus, JR. Epichloë fungal endophytes–a vital component for perennial ryegrass survival in New Zealand. New Zealand J Agri Res. 2024; 67(4):451-468. Doi: 10.1080/00288233.2023.2170426

Portman, TA, Arnold AE, Bradley RG, Fehmi JS, Rasmussen C, Tfaily MM. Fungal endophytes of the invasive grass Eragrostis lehmanniana shift metabolic expression in response to native and invasive grasses. Fungal Ecol. 2024; 68:101327. Doi: 10.1016/j.funeco.2023.101327

Cibils‐Stewart X, Vandegeer RK, Mace WJ, Hartley SE, Powell JR, Popay AJ, Johnson, SN. Mycorrhizal fungi compromise production of endophytic alkaloids, increasing plant susceptibility to an aphid herbivore. J. Ecol. 2024.

Ozyigit II, Dogan I, Hocaoglu-Ozyigit A, Yalcin B, Erdogan A, Yalcin IE, Cabi E, Kaya Y. Production of secondary metabolites using tissue culture-based biotechnological applications. Front. Plant Sci. 2023; 14:1132555. Doi: 10.3389/fpls.2023.1132555

Pasternak TP, Steinmacher D. Plant growth regulation in cell and tissue culture in vitro. Plants. 2024; 13(2):327. Doi: 10.3390/plants13020327

Zhao A, Xu W, Xu P, Zhang X, Wu Y, Xu A, Zhong Y, Oladipo A, Oladipo F, Fu F. Establishment of Tissue Culture and Regeneration System in Hippophae gyantsensis Lian. Hortic. 2024;10(5):460.Doi:10.3390/horticulturae10050460

Perotto S, Rodda M, Benetti A, Sillo F, Ercole E, Rodda M, Girlanda M, Murat C, Balestrini R. Gene expression in mycorrhizal orchid protocorms suggests a friendly plant–fungus relationship. Planta. 2014; 239(6):1337-1349. Doi: 10.1007/s00425-014-2062-x

Tian F, Liao XF, Wang LH, Bai XX, Yang YB, Luo ZQ, Yan FX. Isolation and identification of beneficial orchid mycorrhizal fungi in Paphiopedilum barbigerum (Orchidaceae). Plant Signal Behav. 2022; 17(1):e2005882-1- e2005882-11.

Wu LS, Dong WG, Si JP, Liu JJ, Zhu YQ. Endophytic fungi, host genotype, and their interaction influence the growth and production of key chemical components of Dendrobium catenatum. Fungal Biology. 2020; 124(10):864-876. Doi: 10.1016/j.funbio.2020.07.002

Shan T, Zhou L, Li B, Chen X, Gu, S, Wang A, Tian L, Liu, J. The plant growth-promoting fungus MF23 (Mycena sp.) increases production of Dendrobium officinale (orchidaceae) by affecting nitrogen uptake and NH4+ Assimilation. Front. Plant Sci. 2021; 12(693561):1-12. Doi: 10.3389/fpls.2021.693561

Jena R, Mukherjee AK, Swain H, Samanta S, Adak T. Isolation of endophytic fungi from wild rice species for disease management and growth promotion in cultivated rice (Oryza sativa L.). Biocontrol Sci. Technol. 2024; 1-27. Doi: 10.1080/09583157.2024.2351812

Aramsirirujiwet Y, Gumlangmak C, Kitpreechavanich V. Studies on antagonistic effect against plant pathogenic fungi from endophytic fungi isolated from Hottuynia Cordata Thunb and screening for Siderophore and indole-3-acetic acid production. KKU Res J. 2016; 21(1):55-66.

Sánchez Márquez S, Bills GF, Zabalgogeazcoa I. Diversity and structure of the fungal endophytic assemblages from two sympatric coastal grasses. Fungal Divers. 2008; 33:87–100

Rollando R, Yuniati Y, Monica E. Bioactive Potential of Cephalosporium sp. a Fungal Endophyte Isolated from Phyllanthus niruri L. Trop. J. Nat. Prod. Res. 2023; 7(4):2749-2755. Doi: 10.26538/tjnpr/v7i4.13

Egbo CC, Igboaka DC, Uzor PF. Antimicrobial Assay and GC-MS Profile of the Extract of the Endophytic Fungus from Annona muricata (Annonaceae) Leaf. Trop. J. Nat. Prod. Res. 2024; 8(4):7030-7034. Doi: 10.26538/tjnpr/v8i4.40

Mehmood A, Khan N, Irshad M, Hamayun M, Husna I, Javed A, Hussain AJEB. IAA producing endopytic fungus Fusariun oxysporum wlw colonize maize roots and promoted maize growth under hydroponic condition. Eur Exp Biol. 2018; 8(4):24. Doi: 10.21767/2248-9215.100065

Rahmad LA, Kuswinanti T, Musa Y. Isolation of fungi producing hormone Indole Acetic Acid (IAA) on sugarcane bagasse and filter cake. IOP Conf. Series: Earth and Environmental Science. 2020; 486(1): 012131. Doi: 10.1088/1755-1315/486/1/012131

Cappuccino JC., Sherman N. Microbiology: A laboratory manual. (3rd ed.). New York :Benjamin cummings Pub Co.; 1992.

Strickland JDH., Person TR. A Practical handbook of sea water analysis. (2nd ed.). Fisheries Research Board of Canada Bulletin 167. Canada:Ottawa; 1972. 310 p.

Lacava PT, Machado PC, de Andrade PHM. Phosphate solubilization by endophytes from the tropical plants. Endophytes: Mineral Nutrient Management. 2021; 3:207-226. Doi: 10.1007/978-3-030-65447-4_9

Schwyn B, Neilands J. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 1987; 160(1):47-56. Doi: 10.1016/0003-2697(87)90612-9

White JF. Endophyte-Host Associations in Grasses. XIX. A Systematic Study of Some Sympatric Species of Epichloë in England. Mycologia. 1993; 85(3):444-455. Doi: 10.1080/00275514.1993.12026295

Leuchtmann A, Schardl CL, Siegel MR. Sexual compatibility and taxonomy of a new species of Epichloë symbiotic with fine fescue grasses. Mycologia. 1994; 86:802–812.

Leuchtmann A, Schardl CL. Mating compatibility and phylogenetic relationships among two new species of Epichloë and other congeneric European species. Mycol Res. 1998; 102:1169–1182.

Wijesooriya WADK, Deshappriya N. An inoculum of endophytic fungi for improved growth of a traditional ricevariety in Sri Lanka. Trop. Plant Res. 2016; 3(3):470-480. Doi: 10.22271/tpr.2016.v3.i3.063

Absalan S, Armand A, Jayawardena RS, McKenzie EH, Hyde KD, Lumyong S. Diversity of Pleosporalean Fungi Isolated from Rice (Oryza sativa L.) in Northern Thailand and Descriptions of Five New Species. J. Fungus. 2024; 10(11):763. Doi : 10.3390/jof10110763

Dos Reis JBA, Lorenzi AS, do Vale HMM Methods used for the study of endophytic fungi: A review on methodologies and challenges, and associated tips. Arch. Microbiol. 2022; 204(11):675. Doi : 10.1007/s00203-022-03283-0

Fan X, Sarsaiya S, Yu J, Pan X, Jin L, Shi J, Chen J. Endophytic fungal diversity on different aged bark of medicinal taxus plant species. J BIOBASED MATER BIO. 2019; 13(4):544-549. Doi : 10.1166/jbmb.2019.1880

Selim K. Biology of Endophytic Fungi. Curr Res Environ Appl Mycol J Fungal Biol. 2012; 2(1):31-82. Doi: 10.5943/cream/2/1/3

Nath R, Sharma GD, Barooa M. 2015. Plant growth promoting endophytic fungi isolated from tea (Camellia sinensis) shrubs of Assam, India. Appl. Ecol. Environ. Res. 2015; 13(3):877-891. Doi:10.15666/aeer/1303_877891

Syamsia, Kuswinanti T, Syam’un E, Masniawati A. The Potency of Endophytic Fungal Isolates Collected from Local Aromatic Rice as Indole Acetic Acid (IAA) Producer. Procedia Food Sci. 2015; 3:96-103. Doi: 10.1016/j.profoo.2015.01.009

Xie M, Gao X, Zhang S, Fu X, Le Y, Wang L. Cadmium stimulated cooperation between bacterial endophytes and plant intrinsic detoxification mechanism in Lonicera japonica thunb. Chemosphere. 2023; 325:138411-138411. Doi: 10.1016/j.chemosphere.2023.138411

Sawangkaew P. Comparison of techniques for examining nitrogen fixation of endophytic nitrogen bacteria and bacteria selection using PCR techniques. Department of Agricultural Biotechnology, Kasetsart University. 2011; 38

Gupta S, Kumar D, Joshi MD, Marahatta S, Tamrakar A, Sunita K, Zacharia AG Hasan W. Harnessing the Power of Microflora Diversity: Exploring Alternative Solutions to Phosphorus Scarcity in the Soil-Plant System. 2024; 5(1):52-67 Doi : 10.52804/ijaas2024.519

Mayadunna N, Karunarathna SC, Asad S, Stephenson SL, Elgorban AM, Al-Rejaie S, Kumla J, Yapa N, Suwannarach N. Isolation of phosphate-solubilizing microorganisms and the formulation of biofertilizer for sustainable processing of phosphate rock. Life. 2023; 13(3):782. Doi : 10.3390/life13030782

Liu F, Qian J, Zhu Y, Wang P, Hu J, Lu B, He Y, Tang S, Shen J, Liu Y, Li F. Phosphate solubilizing microorganisms increase soil phosphorus

availability: a review. Geomicrobiol. J. 2024; 41(1): 1-16. Doi : 10.1080/01490451.2023.2272620

Chanrattanayothin P. Isolation of potential phosphate solubilizing bacteria from the rhizosphere of Red Brown Rice. Product Quality and Standards Inspection Service Institute. Maejo University, Chiang Mai Province. TIS 50290. 2014.

Pablo RH, Leonard SO, Gabriele B, Anna M, Stéphane C, Andrea C, Matthias D, Angela S. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. MMBR. 2015; 79(3):293–316.

Prathyusha P, Rajitha AB, Sri T, Ashokvardhan K. Satya P. Antimicrobial and siderophore activity of the endophytic fungus Acremonium sclerotigenum inhabiting Terminalia bellerica Roxb. Int J Pharm Sci Rev Res. 2015; 30(1): 84-87.

Ghosh SK, Bera T, Chakrabarty AM. Microbial siderophore–A boon to agricultural sciences. Biological Control. 2020; 144:104214. Doi : 10.1016/j.biocontrol.2020.104214

Khoshru B, Mitra D, Nosratabad AF, Reyhanitabar A, Mandal L, Farda, B., Djebaili R, Pellegrini M, Guerra-Sierra BE, Senapati A, Panneerselvam P, Mohapatra PKD. Enhancing manganese availability for plants through microbial potential: A sustainable approach for improving soil health and food security. Bacteria. 2023; 2(3):129-141. Doi : 10.3390/bacteria2030010

Khamjam M, Pathamaaree W. Siderophores from Microorganisms. SWU. Sci. J. 2014; 30(1):229-247.

Clay K. and Schardl CL. Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am. Nat. 2002; 160:S99-S127.

Silvia A dos S, Eric de CS, Andr eacute AP, Luciana LFR. Asymbiotic seed germination and in vitro propagation of Brasiliorchis picta. Afr. J. Biotechnol. 2016; 15(6):134-144. Doi: 10.5897/ajb2015.15043

Xie M, Gao X, Zhang S, Fu X, Le Y, Wang L. Cadmium stimulated cooperation between bacterial endophytes and plant intrinsic detoxification mechanism in Lonicera japonica thunb. Chemosphere. 2023; 325:138411-138411. Doi: 10.1016/j.chemosphere.2023.138411

Kedar A, Rathod D, Yadav A, Agarkar G, Rai M. Endophytic Phoma sp. isolated from medicinal plants promote the growth of Zea mays. Nusantara Biosci. 2014; 6:132-139.