Harnessing the Ecofriendly Antifouling Potential of Agelasine Alkaloids Through MetaTox Analysis and Computational Studies

Main Article Content

Walter Balansa
Riyanti
Kirsten H. Balansa
Novriyandi Hanif

Abstract

Agelasine alkaloids derived from marine sponges of the genus Agelas represent a promising source of antifouling compounds with potential economic and environmental benefits. Notably, agelasine D (1), agelamide D (2), epi-agelasine C (3) and agelasidine A (4) are known antifoulants. However, their ecotoxicological parameters remain unreported, raising concerns about their suitability as eco-friendly antifoulants. To address this, glucuronidated and sulfated metabolites were generated using MetaTox. Their binding affinities against acetylcholinesterase (AChE) were evaluated through molecular docking using PyRx, and ecotoxicological parameters were assessed using EPI Suite™. Compounds 14 exhibited strong AChE binding (−7.5 to −11.4 kcal/mol), surpassing those of AChE inhibitors such as synoxalidinones A (5) and C (6) and commercial antifoulants like seanine_211 (7) and irgarol-1501 (8). Furthermore, these compounds also displayed unfavorable toxicological profiles similar to commercial antifoulants, including high log Kow (3.78 to 5.46), BCF (3.16 to 145), BAF (138.0 to 590), and Log Koc (−0.15 to 2.18) values, with longer biotransformation half-lives (266 to 590 days), indicating potential environmental and health risks. In contrast, glucuronidated and sulfated derivatives particularly 1a, 3a, 3c-3d, 4a and 4b demonstrated stronger AChE binding (−8.0 to −12.3 kcal/mol) and significantly improved toxicological profiles, including low log Kow (−0.94 to 1.29), BCF (0.64 to 1.28), BAF (0.23 to 3.16), and shorter half-lives (0.01 to 0.17 days), with non-toxic and non-mutagenic properties. While their efficient synthesis and effectiveness in real-world applications remain to be tested, compounds 1a, 3a and 3b represent promising eco-friendly antifouling candidates.

Downloads

Download data is not yet available.

Article Details

How to Cite
Balansa, W., Riyanti, Balansa, K. H., & Hanif, N. (2025). Harnessing the Ecofriendly Antifouling Potential of Agelasine Alkaloids Through MetaTox Analysis and Computational Studies. Tropical Journal of Natural Product Research (TJNPR), 9(1), 329-340. https://doi.org/10.26538/tjnpr/v9i1.42
Section
Articles

How to Cite

Balansa, W., Riyanti, Balansa, K. H., & Hanif, N. (2025). Harnessing the Ecofriendly Antifouling Potential of Agelasine Alkaloids Through MetaTox Analysis and Computational Studies. Tropical Journal of Natural Product Research (TJNPR), 9(1), 329-340. https://doi.org/10.26538/tjnpr/v9i1.42

References

Gomez, BJ. Marine natural products: a promising source of environmentally friendly antifouling agents for the maritime industries. Front. Mar. Sci. 2022;9:858757. doi.org/10.3389/fmars.2022.858757.

Evans SM, Birchenough AC, Brancato MS. The TBT ban: out of the frying pan into the fire? Mar. Poll. Bull. 2000;40(3):204-211. doi.org/10.1016/S0025-326X(99)00248-9.

Champ MA. A review of organotin regulatory strategies, pending actions, related costs and benefits. Sci. Tot. Env. 2000; 258(1-2):21-71. doi.org/10.1016/S0048-9697(00)00506-4.

Blossom NW. Copper based antifouling–a regulatory update and recent scientific environmental studies. Am. Chem. Corp. 2014.

Dafforn KA, Lewis JA, Johnston EL. Antifouling strategies: history and regulation, ecological impacts and mitigation. Mar. Pollut. Bull. 2011;62(3):453–465; doi: 10.1016/j.marpolbul.2011.01.012.

Pan J, Xie Q, Chiang H, Peng Q, Qian PY, Ma C, Zhang G. “from the nature for the nature”: an eco-friendly antifouling coating consisting of poly(lactic acid)- based polyurethane and natural antifoulant. ACS Sustain. Chem. Eng. 2020;8(3):1671–1678. doi: 10.1021/acssuschemeng.9b06917.

Liu LL, Wu CH, Qian PY. Marine natural products as antifouling molecules–a mini-review (2014–2020). Biofouling 2020;36(10):1210–1226. doi: 10.1080/08927014.2020.1864343.

Qi SH, Ma X. Antifouling compounds from marine invertebrates. Mar. Drugs 2017;15(9). doi: 10.3390/md15090263.

Wang KL, Wu ZH, Wang Y, Wang CY, Xu Y. Mini- review: antifouling natural products from marine microorganisms and their synthetic analogs. Mar. Drugs 2017;15(9). doi: 10.3390/md15090266.

Balansa W, Riyanti, Manurung UN, Tomasoa AM, Hanif N, Rieuwpassa, Schäberle TF. Sponge-based ecofriendly antifouling: field study on nets, molecular docking with agelasine alkaloids. Trop. J. Nat. Prod. Res. 2024;8(1):5913–5924. doi: 10.26538/tjnpr/v8i1.29.

Jin H, Tian L, Bing W, Zhao J, Ren L. Bioinspired marine antifouling coatings: status, prospects, and future. Prog. Mat. Sci. 2022;124:100889. doi.org/10.1016/j.pmatsci.2021.100889.

Hattori T, Adachi K, Shizuri Y. New agelasine compound from the marine sponge Agelas mauritiana as an antifouling substance against macroalgae. J. Nat. Prod. 1997;60(4):411-3. doi.org/10.1021/np960745b.

Hertiani T, Edrada-Ebel RA, Ortlepp S, van Soest RWM, de Voogd NJ, Wray V, Hentschel U. From anti- fouling to biofilm inhibition: new cytotoxic secondary metabolites from two Indonesian Agelas sponges. Bioorg. Med. Chem. 2010;18(3):1297–1311. doi: 10.1016/j.bmc.2009.12.028.

Paulsen B, Fredriksen KA, Petersen D, Maes L, Matheeussen A, Naemi AO, Scheie AA, Simm R, Ma R, Wan B, Franzblau S. Synthesis and antimicrobial activities of N6-hydroxyagelasine analogs and revision of the structure of ageloximes. Bioorg. Med. Chem. 2019;27(4):620-9.

doi.org/10.1016/j.bmc.2019.01.002.

Sjögren M, Dahlström M, Hedner E, Jonsson PR, Anders V, Gunderson LL. Antifouling activity of the sponge metabolite agelasine D and synthesized analogs on Balanus improvisus. Biofouling 2008;24(4):251– 258. doi: 10.1080/08927010802072753.

Georgiades E, Kluza D, Bates T, Lubarsky K, Brunton J, Growcott A, Smith T, McDonald S, Gould B, Parker N, Bell A. Regulating vessel biofouling to support new Zealand’s marine biosecurity system – a blue print for evidence-based decision making. Front. Mar. Sci. 2020;7. doi: 10.3389/fmars.2020.00390.

Utama IKAP, Hermawan YA, Ariesta RC, Risdiyanto S, Sitinjak M, Ardhiyanto W. Protecting the Country from Bio-Invasion, a Case Study of Biofouling Management in Indonesia. In: IOP Conference Series: Earth Environ. Sci. Inst. Phys.; 2023. doi: 10.1088/1755-1315/1250/1/012022.

Wang N, Zhang R, Liu K, Zhang Y, Shi X, Sand W, Hou B. Application of nanomaterials in Antifouling: A Review. Nano Mat. Sci. 2024. doi: 10.1016/j.nanoms.2024.01.009.

Sabe VT, Ntombela T, Jhamba LA, Maguire GEM, Govender T, Naicker T, Kruger H. Current Trends in Computer Aided Drug Design and a Highlight of Drugs Discovered via Computational Techniques: A Review. Eur. J. Med. Chem. 2021;224. doi: 10.1016/j.ejmech.2021.113705.

Shoaib TH, Ibraheem W, Abdelrahman M, et al. Exploring the potential of approved drugs for triple- negative breast cancer treatment by targeting casein kinase 2: Insights from computational studies. PLoS One 2023;18(8 August). doi: 10.1371/journal.pone.0289887.

Ravnik Z, Muthiah I, Dhanaraj P. Computational studies on bacterial secondary metabolites against breast cancer. J Biomol Struct Dyn 2021;39(18):7056– 7064. doi: 10.1080/07391102.2020.1805361.

Jenner AL, Aogo RA, Davis CL, Smith AM, Craig M. Leveraging computational modeling to understand infectious diseases. Curr. Pathobiol. Rep. 2020;8(4):149–161; doi: 10.1007/s40139-020-00213-x.

Monteiro AF, Viana JD, Nayarisseri A, Zondegoumba EN, Mendonça Junior FJ, Scotti MT, Scotti L. Computational studies applied to flavonoids against Alzheimer’s and Parkinson’s diseases. Oxid. Med. Cell Longev. 2018;2018. doi: 10.1155/2018/7912765.

Gaudêncio SP, Pereira F. Predicting antifouling activity and acetylcholinesterase inhibition of marine-derived compounds using a computer-aided drug design approach. Mar. Drugs 2022;20(2). doi: 10.3390/md20020129.

Arabshahi HJ, Trobec T, Foulon V, Hellio C, Frangež R, Sepčić K, Cahill P, Svenson J. Using virtual AChE homology screening to identify small molecules with the ability to inhibit marine biofouling. Front. Mar. Sci. 2021;8. doi: 10.3389/fmars.2021.762287.

Almeida JR, Palmeira A, Campos A, Cunha I, Freitas M, Felpeto AB, Turkina MV, Vasconcelos V, Pinto M, Correia-da-Silva M, Sousa E. Structure-antifouling activity relationship and molecular targets of bio-inspired(thio)xanthones. Biomolecules 2020;10(8):1–17. doi: 10.3390/biom10081126.

Rudik AV, Bezhentsev VM, Dmitriev AV, Druzhilovskiy DS, Lagunin AA, Filimonov DA, Poroikov VV. MetaTox: Web application for predicting structure and toxicity of xenobiotics’ metabolites. J. Chem. Inf. Model. 2017;57(4):638–642. doi: 10.1021/acs.jcim.6b00662.

Marin DE, Taranu I. Using in silico approach for metabolomic and toxicity prediction of alternariol. Toxins (Basel) 2023;15(7). doi: 10.3390/toxins15070421.

Agahi F, Juan C, Font G, Juan-García. In silico methods for metabolomic and toxicity prediction of zearalenone, α- zearalenone and β-zearalenone. Food Chem. Tox. 2020;146; doi: 10.1016/j.fct.2020.111818.

Järvinen E, Deng F, Kiander W, Sinokki A, Kidron H, Sjöstedt N. The role of uptake and efflux transporters in the disposition of glucuronide and sulfate conjugates. Front. Pharmacol. 2022;12. doi: 10.3389/fphar.2021.802539.

Docampo-Palacios ML, Alvarez-Hernández A, Adiji O, Gamiotea-Turro D, Valerino-Diaz AB, Viegas LP, Ndukwe IE, De Fátima Â, Heiss C, Azadi P, Pasinetti GM. Glucuronidation of methylated quercetin derivatives: chemical and biochemical approaches. J Agr. Food Chem. 2020;50:14790-807. doi: 10.1021/acs.jafc.0c04500.

Vitku J, Hill M, Kolatorova L, Kubala Havrdova E, Kancheva R. Steroid sulfation in neurodegenerative diseases. Front. Mol. Biosci. 2022;9:839887. doi.org/10.3389/fmolb.2022.839887.

Liang SC, Xia YL, Hou J, Ge GB, Zhang JW, He YQ, Wang JY, Qi XY, Yang L. Methylation, glucuronidation, and sulfonation of daphnetin in human hepatic preparations in vitro: metabolic profiling, pathway comparison, and bioactivity analysis. J Pharm. Sci. 2016;105(2):808-16. doi.org/10.1016/j.xphs.2015.10.010.

Teles YC, Souza MS, Souza MD. Sulphated flavonoids: biosynthesis, structures, and biological activities. Molecules. 2018;23(2):480. doi.org/10.3390/molecules23020480.

Williamson G, Kay CD, Crozier A. The bioavailability, transport, and bioactivity of dietary flavonoids: A review from a historical perspective. Comp. Rev. Food Sci. Safety. 2018;17(5):1054-112.

Zheng J, Xiong H, Li Q, He L, Weng H, Ling W, Wang D. Protocatechuic acid from chicory is bioavailable and undergoes partial glucuronidation and sulfation in healthy humans. Food Sci. Nut. 2019;7(9):3071-80. doi.org/10.1002/fsn3.1168.

Pranata A, Fitzgerald CC, Khymenets O, Westley E, Anderson NJ, Ma P, Pozo OJ, McLeod MD. Synthesis of steroid bisglucuronide and sulfate glucuronide reference materials: unearthing neglected treasures of steroid metabolism. Steroids. 2019;143:25-40. doi.org/10.1016/j.steroids.2018.11.017.

Courtois A, Jourdes M, Dupin A, Lapèze C, Renouf E, Biais B, Teissedre PL, Mérillon JM, Richard T, Krisa S. In vitro glucuronidation and sulfation of ε-viniferin, a resveratrol dimer, in humans and rats. Mol. 2017;22(5):733. doi.org/10.3390/molecules22050733.

Almeida AF, Santos CN, Ventura MR. Synthesis of new sulfated and glucuronidated metabolites of dietary phenolic compounds identified in human biological samples. J Agri. Food Chem. 2017;65(31):6460-6. doi.org/10.1021/acs.jafc.6b05629.

Esmaeili SV, Alboghobeish A, Feyzi V, Ravannakhjavani F, Zendehdel R. Virtual screening study for biological activity assessment and metabolism pathway of a fuel dye in airborne exposure scenario. Tox. Ind. Health. 2024:07482337241286187. doi.org/10.1177/074823372412861.

Card, ML, Gomez AV, Lee WH, Lynch, DG, Orentas NS, Lee MT, Wong EM, Boethling RS. 2017. History of EPI Suite™ and future perspectives on chemical property estimation in US toxic substances control act new chemical risk assessments. Env. Sci. Proc. Imp. 19(3), pp.203-212.

Vilas-Boas C, Silva ER, Resende D, Pereira B, Sousa G, Pinto M, Almeida J, Correia-da-Silva M, Sousa E. 3,4-Dioxygenated xanthones as antifouling additives for marine coatings: in silico studies, seawater solubility, degradability, leaching, and antifouling performance. Env. Sci. Poll. Res. 2023;30(26):68987–68997. doi: 10.1007/s11356-023-26899-1.

Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Chem. Biol. Meth. Prot. 2015:243-50.

Paulsen, B. Gundersen, L-L. The first synthesis of (–)-agelasine F; an antimycobacterial natural product found in marine sponges in the Agelas genus. Eur. J. Org. Chem., 2020: 2244-2250. doi:10.1002/ejoc.202000202.

Mackay D, Celsie AK, Powell DE, Parnis JM. Bioconcentration, bioaccumulation, biomagnification and trophic magnification: a modelling perspective. Env. Sci. Proc. Imp. 2018;20(1):72-85. doi: 10.1039/C7EM00485K.

Canada justice law website. Persistence and bioaccumulation regulations SOR/2000-107 https://laws-lois.justice.gc.ca/eng/regulations/sor-2000-107/page-1.html.

Guan L, Yang H, Cai Y, Sun L, Di P, Li W, Liu G, Tang Y. ADMET-score-a comprehensive scoring function for evaluation of chemical drug-likeness. Medchemcomm 2019;10(1):148–157. doi: 10.1039/C8MD00472B.

Kim HY. Statistical notes for clinical researchers: Chi-squared test and Fisher's exact test. Restor Dent Endod. 2017 May;42(2):152-155. doi: 10.5395/rde.2017.42.2.152. Epub 2017 Mar 30.

Bourne Y, Taylor P, Radić Z, Marchot P. Structural insights into ligand interactions at the acetylcholinesterase peripheral anionic site. EMBO J. 2003;22(1):1-12. doi: 10.1093/emboj/cdg005.

Harel M, Quinn DM, Nair HK, Silman I, Sussman JL. The X-ray structure of a transition state analog complex reveals the molecular origins of the catalytic power and substrate specificity of acetylcholinesterase. J Ame. Chem. Soc. 1996;118(10):2340-6.

Bajda M, Więckowska A, Hebda M, Guzior N, Sotriffer CA, Malawska B. Structure-based search for new inhibitors of cholinesterase. Inter. J Mol. Sci. 2013;14(3):5608-32.

Hansch C, Leo A, Taft RW. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 1991;91(2):165-95. doi.org/10.1021/cr00002a004.

Sirimulla S, Bailey JB, Vegesna R, Narayan, M. Halogen interactions in protein-ligand complexes: implications of halogen bonding for rational drug design. J Chem. Inf. Mod. 2013; 53(11), 2781–2791. doi.org/10.1021/ci400257k.

Pomponi M, Sacchi S, Colella A, Patamia M, Marta M. The role of TRP84 in catalytic power and the specificity of AChE. Biophy. Chem. 1998; 9;72(3):239-46. doi.org/10.1016/S0301-4622(98)00106-9.

Govindaraj RG, Brylinski M. Comparative assessment of strategies to identify similar ligand-binding pockets in proteins. BMC Bioinfor. 2018;19(1). doi: 10.1186/s12859-018-2109-2.

Malhotra S, Karanicolas J. when does chemical elaboration induce a ligand to change its binding mode? J. Med. Chem. 2017;60(1):128–145. doi: 10.1021/acs.jmedchem.6b00725.

Environment and climate change Canada (ECHA). Guidance on information requirements and chemical safety assessment. Environment and climate change Canada. 2017.

Environment and climate change Canada (ECHA). Guidance on information requirements and chemical safety assessment. Environment and climate change Canada. 2021.

Mackay D, Fraser A. 2000. Bioaccumulation of persistent organic chemicals: mechanisms and models. Envion. Poll. 110(3): 375-391. doi: 10.1016/S0269-7491(00)00162-7.

Kobayashi Y. Analysis of the environmental parameters for risk assessment of pesticides by machine learning approach. Doctoral Thesis. 2021. University of Tsukuba, Japan

Nikolaou M, Neofitou N, Skordas K, Castritsi-Catharios I, Tziantziou L. 2014. Fish farming and anti-fouling paints: a potential source of Cu and Zn in farmed fish. Aquacult. Environ. Interact. 5:163-171. doi: 10.3354/aei00101.

Papa E, Sangion A, Arnot JA, Gramatica P. 2018. Development of human biotransformation QSARs and application for PBT assessment

refinement. Food Chem. Tox. 112; 535–543. doi: 10.1016/j.fct.2017.04.016.

Gimeno S, Allan D, Paul K, Remuzat P, Collard M. Are current regulatory log Kow cut-off values fit-for-purpose as a screening tool for bioaccumulation potential in aquatic organisms? Reg. Tox. Pharmacol. 2024;147:105556. doi.org/10.1016/j.yrtph.2023.105556.

Gottardo S, Hartmann NB, Sokull-Klüttgen B. Review of available criteria for non-aquatic organisms within PBT/vPvB frameworks [Internet, November 19, 2024]. 2014.

Vilas-Boas C, Neves AR, Carvalhal F, Pereira S, Calhorda MJ, Vasconcelos V, Pinto M, Sousa E, Almeida JR, Silva ER, Correia-da-Silva M. Multidimensional characterization of a new antifouling xanthone: structure-activity relationship, environmental compatibility, and immobilization in marine coatings. Ecotox. Environ. Safety. 2021; 228:112970. doi.org/10.1016/j.ecoenv.2021.112970.

Nikolaou M, Neofitou N, Skordas K, Castritsi-Catharios I, Tziantziou L. Fish farming and anti-fouling paints: a potential source of Cu and Zn in farmed fish. Aquaculture Environment Interactions. 2014 18;5(2):163-71. doi: 10.3354/AEI00101.

Guillemette C, Lévesque É, Rouleau M. Pharmacogenomics of human uridine diphospho-glucuronosyltransferases and clinical implications. Clin. Pharmacol. Ther. 2014;96(3):324–339. doi: 10.1038/clpt.2014.126.

Cerny MA. Prevalence of non-cytochrome P450-mediated metabolism in food and drug administration-approved oral and intravenous drugs: 2006-2015. Drug mpoMet. Disp. 2016;44(8):1246–1252. doi: 10.1124/dmd.116.070763.

P JanCova, M SIller. Topics on drug metabolism (Paxton J. ed). InTech. 2012. doi: 10.5772/1180.

Pan LL, Yang Y, Hui M, Wang S, Li CY, Zhang H, Ding YH, Fu L, Diao XX, Zhong DF. Sulfation predominates the pharmacokinetics, metabolism, and excretion of forsythin in humans: major enzymes and transporters identified. Acta Pharmacol. Sin. 2021;42(2):311-22. doi: 10.1038/s41401-020-0481-8.

Tornio A, Filppula AM, Kailari O, Neuvonen M, Nyrönen TH, Tapaninen T, Neuvonen PJ, Niemi M, Backman JT. Glucuronidation converts clopidogrel to a strong time‐dependent inhibitor of CYP2C8: a phase II metabolite as a perpetrator of drug–drug interactions. Clin. Pharm. & Ther. 2014;96(4):498-507. doi.org/10.1038/clpt.2014.141.

Yi L, Dratter J, Wang C, Tunge JA, Desaire H. Identification of sulfation sites of metabolites and prediction of the compounds’ biological effects. Anal. Bioanal. Chem. 2006;386:666-74. doi: 10.1007/s00216-006-0495-1.

Ferreira LV, Santos TM, Tavares CA, Rasouli H, Ramalho TC. Atomistic origins of resurrection of aged acetylcholinesterase by quinone methide precursors. Mol. 2024;29(15):3684. doi.org/10.3390/molecules29153684.

Kyei SK, Darko G, Akaranta O. Chemistry and application of emerging ecofriendly antifouling paints: a review. J Coat. Tech. Res. 2020;17:315-32. doi.org/10.1007/s11998-019-00294-3.

Sen K, Erdogan UH, Cavas L. Prevention of biofouling on aquaculture nets with eco‐friendly antifouling paint formulation. Col. Techn. 2020;136(2):120-9. doi.org/10.1111/cote.12454.