Anti-Fungal Activity Prediction of Curcuma Longa and Piper belte through Molecular Docking
Main Article Content
Abstract
Traditional medicine is deeply rooted in Indonesian culture, yet concerns persist regarding the safety and efficacy of medicinal plants. This study focuses on Curcuma longa and Piper betle, two prevalent medicinal plants in Southeast Asia, known for their potential antifungal properties, though the specific bioactive compounds remain unidentified. A machine learning model was developed using a dataset from DUD-E (Directory of Useful Decoys) docking to predict antifungal compounds, successfully identifying substances capable of inhibiting Cytochrome P450 EryK protein. Notably, compounds such as curcumin, beta-caryophyllene, and eugenol were highlighted for their significant antifungal activity. From the analysis, 21 compounds from Curcuma longa and 15 from Piper betle were selected and screened for their inhibitory potential. These compounds were further filtered based on Lipinski's rule of five, resulting in 7 compounds from Curcuma longa and 5 from Piper betle exhibiting binding affinities comparable to the reference ligand. Tanimoto similarity analysis revealed that the identified compounds shared less than 10% similarity in chemical structure to the reference ligand. However, the binding amino acids in several compounds demonstrated over 50% similarity to those of the reference ligand. The findings underscore the therapeutic potential of these compounds, contributing to the development of natural antifungal agents.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1. Liu CX. Overview on development of ASEAN traditional and herbal medicines. Chin Herb Med 2021;13(4):441-450.
2. Park HL, Lee HS, Shin BC, Liu JP, Shang Q, Yamashita H, Lim B. Traditional medicine in China, Korea, and Japan: a brief introduction and comparison. Evidence‐Based Complementary and Alternative Medicine. 2012;2012(1):429103.
3. Sumarni W, Sudarmin S, Sumarti SS. The scientification of jamu: A study of Indonesian’s traditional medicine. J Phys Conf Ser 2019:1321(3):032057.
4. Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharm 2014;4:66193.
5. Wahyuningsih R, Adawiyah R, Sjam R, Prihartono J, Ayu Tri Wulandari E, Rozaliyani A, Ronny R, Imran D, Tugiran M, Siagian FE, Denning DW. Serious fungal disease incidence and prevalence in Indonesia. Mycoses 2021;64(10):1203-1212.
6. Ramadan G, Al-Kahtani MA, El-Sayed WM. Anti-inflammatory and anti-oxidant properties of Curcuma longa (turmeric) versus Zingiber officinale (ginger) rhizomes in rat adjuvant-induced arthritis. Inflammation 2011;34:291-301.
7. Tomeh MA, Hadianamrei R, Zhao X. A review of curcumin and its derivatives as anticancer agents. Int J Mol Sci 2019;20(5):1033.
8. Abouali N, Moghimipour E, Mahmoudabadi AZ, Namjouyan F, Abbaspoor Z. The effect of curcumin-based and clotrimazole vaginal cream in the treatment of vulvovaginal candidiasis. J Family Med Prim Care 2019;8(12):3920-3924.
9. Varthya SB, Thangaraju P, Venkatesan S. Curcumin and fungal infection–commonly available herbs for common female infection. J Family Med Prim Care 2020;9(2):1272.
10. Sivareddy B, Reginald BA, Sireesha D, Samatha M, Reddy KH, Subrahamanyam G. Antifungal activity of solvent extracts of Piper belte and Ocimum sanctum Linn on Candida albicans: An: in vitro: comparative study. J oral Maxillofac Pathol 2019;23(3):333-337.
11. Selvaraj GK, Wilson JJ, Kanagaraj N, Subashini E, Thangavel S. Enhanced antifungal activity of Piper belte against candidiasis infection causing Candida albicans and in silico analysis with its virulent protein. Biomed Biotechnol Res J 2022;6(1):73-80.
12. Karo MB, Tambaip T, Hatta M, Simanjuntak TP, Irmawaty L, Rina T, Kamelia E, Rahmawati F, Bintang M. A mini review of Indonesian medicinal plants for Vulvovaginal candidiasis. Rasayan J Chem 2017;10(4):1280-1288.
13. Kumari M, Tiwari N, Chandra S, Subbarao N. Comparative analysis of machine learning based QSAR models and molecular docking studies to screen potential anti-tubercular inhibitors against InhA of mycobacterium tuberculosis. Int J Comput Biol Drug Des 2018;11(3):209-235.
14. Genc B, Tunc HÜ. Optimal training and test sets design for machine learning. Turk J Elec Eng Comp Sci 2019;27(2):1534-1545.
15. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK. Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 2012;55(14):6582-6594.
16. Dupont S, Lemetais G, Ferreira T, Cayot P, Gervais P, Beney L. Ergosterol biosynthesis: a fungal pathway for life on land?. Evolution 2012;66(9):2961-2968.
17. Jordá T, Puig S. Regulation of ergosterol biosynthesis in Saccharomyces cerevisiae. Genes 2020;11(7):795.
18. Akins RA. An update on antifungal targets and mechanisms of resistance in Candida albicans. Medical mycology. 2005 Jun 1;43(4):285-318.
19. Onyewu C, Blankenship JR, Del Poeta M, Heitman J. Ergosterol biosynthesis inhibitors become fungicidal when combined with calcineurin inhibitors against Candida albicans, Candida glabrata, and Candida krusei. Antimicrob Agents Chemother 2003;47(3):956-964.
20. Montemiglio LC, Gianni S, Vallone B, Savino C. Azole drugs trap cytochrome P450 EryK in alternative conformational states. Biochemistry 2010;49(43):9199-9206.
21. Shinbo Y, Nakamura Y, Altaf-Ul-Amin M, Asahi H, Kurokawa K, Arita M, Saito K, Ohta D, Shibata D, Kanaya S. KNApSAcK: a comprehensive species-metabolite relationship database. Plant metabolomics 2006:165-181.
22. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L. PubChem 2023 update. Nucleic Acids Res 2023;51(D1):D1373-D1380.
23. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J. Scikit-learn: Machine learning in Python. J Mach Learn Res. 2011;12:2825-2830.
24. Kluyver T, Ragan-Kelley B, Pérez F, Granger BE, Bussonnier M, Frederic J, Kelley K, Hamrick JB, Grout J, Corlay S, Ivanov P. Jupyter Notebooks-a publishing format for reproducible computational workflows. Elpub. 2016;2016:87-90.
25. Korb O, Stutzle T, Exner TE. Empirical scoring functions for advanced protein−ligand docking with PLANTS. J Chem Inform Model 2009;49(1):84-96.
26. Korb O, Stützle T, Exner TE. PLANTS: Application of ant colony optimization to structure-based drug design. InInternational workshop on ant colony optimization and swarm intelligence 2006: 247-258. Berlin, Heidelberg: Springer Berlin Heidelberg.
27. Xue LC, Rodrigues JP, Kastritis PL, Bonvin AM, Vangone A. PRODIGY: a web server for predicting the binding affinity of protein–protein complexes. Bioinformatics 2016;32(23):3676-3678.
28. Vangone A, Schaarschmidt J, Koukos P, Geng C, Citro N, Trellet ME, Xue LC, Bonvin AM. Large-scale prediction of binding affinity in protein–small ligand complexes: The PRODIGY-LIG web server. Bioinformatics. 2019;35(9):1585-1587.
29. Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 2000;44(1):235-249.
30. Patlewicz G, Jeliazkova N, Safford RJ, Worth AP, Aleksiev B. An evaluation of the implementation of the Cramer classification scheme in the Toxtree software. SAR QSAR Environ Res 2008;19(5-6):495-524.
31. Damião MC, Pasqualoto KF, Polli MC, Parise Filho R. To be drug or prodrug: structure-property exploratory approach regarding oral bioavailability. J Pharm Pharm Sci 2014;17(4):532-540.
32. Radifar M, Yuniarti N, Istyastono EP. PyPLIF: Python-based protein-ligand interaction fingerprinting. Bioinformation 2013;9(6):325.
33. Istyastono EP, Radifar M, Yuniarti N, Prasasty VD, Mungkasi S. PyPLIF HIPPOS: A molecular interaction fingerprinting tool for docking results of AutoDock Vina and PLANTS. J Chem Inform Model 2020;60(8):3697-3702.
34. Liu K, Kokubo H. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations: a cross-docking study. J Chem Inform Model 2017;57(10):2514-22.
35. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017;7(1):42717.
36. Dara S, Dhamercherla S, Jadav SS, Babu CM, Ahsan MJ. Machine learning in drug discovery: a review. Artif Intell Rev 2022;55(3):1947-1999.