Safety Evaluation, High-Performance Thin Layer Chromatography Profile, Antioxidant, Antibacterial, and Anti-inflammatory Activities of Homalanthus macradenius Pax & K.Hoffm Crude Leaf Extract
Main Article Content
Abstract
Homalanthus macradenius is endemic to the Philippines and is one of the seven species of the genus utilised to treat various health problems in traditional medicine. This study was undertaken to evaluate the safety of H. macradenius leaf ethanolic extract through acute oral toxicity in Swiss albino mice per Organization for Economic Cooperation and Development (OECD) guidelines 423; determine the phytochemical constituents through High-Performance Thin-Layer Chromatography; quantify the total phenolic and flavonoid content; and to assess its bioactivities such as antioxidant, antibacterial, and anti-inflammatory potentials. Acute oral toxicity of H. macradenius ethanolic extract at 300 mg/kg, 2000 mg/kg, and 5000 mg/kg revealed no mortality. The HPTLC chromatogram displayed different colours of bands ranging from blue, purple, yellow, green, and orange with an Rf value of 0.10 to 0.81, which indicates the presence of different phytochemical constituents of the plant ethanolic extract. The total phenolic and flavonoid contents were 8.07±0.01 mg GAE/g and 33.86±0.03 mg QE/g, respectively. Antioxidant activity was found to be 15.68±0.02 mg AAE/g. The extract exhibited antibacterial activity with minimum inhibitory concentrations against Enterococcus faecalis, Staphylococcus aureus, and Pseudomonas aeruginosa at 1.562±0.09 mg/mL, 12.5±0.15 mg/mL and 25±0.03 mg/mL, respectively. The percent in vitro COX-2 inhibitory activity showed 92.30±0.73% at 100 ppm and 60.51±4.02 % at 10 ppm with a selectivity ratio (COX-2/COX-1) of at most 1.07. Based on the findings, H. macradenius extract did not show oral toxicity in mice and possessed antioxidant, antibacterial, and anti-inflammatory activities, revealing its potential for future drug development.
Downloads
Article Details
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Uppar V, Kiran M, Basarikatti A, Chougala M, Chandrashekharappa S, Mohan, M. Synthesis, antibacterial and antioxidant studies of 7-amino-3-(4-flurobenzoyl) indolizine-1-carboxylate derivatives. J Appl Pharm Science 2020;10:77-85 Doi: 10.7324/JABB.2021.9111
Vines G. Herbal harvests with a future: towards sustainable sources for medicinal plants. Plant Life Int 2004:41-42 Salisbury, www.plantlife.org.uk. Doi:9781904749004
Naseem U, Muhammad Z, Farhat Ali K, Shazeb K. A review on general introduction to medicinal plants, its phytochemicals and role of heavy metal and inorganic constituents. Life Sci 2014; 11(7s):520–527
Wintola O, Afolayan, A. The antibacterial, phytochemicals and antioxidants evaluation of the root extracts of Hydnora africana Thunb. used as antidysenteric in Eastern Cape Province, South Africa. BMC Complement Altern Med. 2015;15:307. Doi: 10.1186/s12906-015-0835-9
Pelser P, Barcelona J, Nickrent D. Euphorbiaceae. In: Co's Digital Flora of the Philippines. 2011; Doi: https://www.philippineplants.org/Families/Euphorbiaceae.html.
Wirasisya, D, Hohmann, J. An overview of the traditional use, phytochemistry, and biological activity of the genus Homalanthus. Elsevier Fitoterapia 2023; 166 Doi: https://doi.org/10.1016/j.fitote.2023.105466.
Dapar, M, Meve, U, Liede-Schumann, S, Alejandro, G. Ethnomedicinal plants used for the treatment of cuts and wounds by the Agusan Manobo of Sibagat, Agusan del Sur, Philippines. Ethnobot Res App 2020; 19:31. https://doi.org/10.32859/era.19.31.1-18
Dapar M, Alejandro G, Meve U & Liede-Schumann S. Quantitative ethnopharmacological documentation and molecular confirmation of medicinal plants used by the Manobo tribe of Agusan del Sur, Philippines. J. Ethnobiol. Ethnomed. 2020; 16(1), 1-60
Hudz N, Yezerska O, Shanaida M, Sedláčková V, Wieczorek P. Application of the Folin-Ciocalteu method to. Pharmacia 2019; 66(4): 209–2155. Doi. 10.3897/pharmacia.66.e38976.
Koley TK, Maurya A, Tripathi A, Singh BK, Singh M, Bhutia TL, Tripathi PC, Singh B. Antioxidant potential of commonly consumed underutilised leguminous vegetables. Int. J. Veg. Sci. 2018; 25(4), 362-372.
Prieto P, Pineda M, Aguilar M. Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Anal Biochem. 1999; 269,2:337-341.
Jothy S, Zakaria Z, Chen Y, Lau Y, Latha L, & Sasidharan, S. Acute Oral Toxicity of Methanolic Seed Extract of Cassia fistula in Mice. Molecules 2011; 16, 5268-5282 https://doi.org/10.3390/molecules16065268
Lohitasu D & Kolapalli R. Isolation and Acute Oral Toxicity studies of Araucaria heterophylla Novel Natural Polysaccharide Gum in Albino Mice. World J. Pharm. Pharm. Sci. 2016; Doi: 10.20959/wjpps201610-7752
Wiegand I, Hilpert K, Hancock, RW. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163–175.
Henshaw P. Uses of Alamar Blue as an Indicator of Microbial Growth in Turbid Solutions for Antimicrobial Evaluation. 2018; Doi.org/10.7275/12222378
Bernardi T, Bortolini O, Massi A, Sacchetti G, Tacchini M, De Risi C. Exploring the synergy between HPTLC and HPLC-DAD for the investigation of wine-making by-products. Mol. 2019;24, 1-16.
Reich E, & Schibli A. Stationary Phases for Planar Separations-Plates for modern TLC LC GC.2005; 23:58-69.
Jaafar NS, Hamad MN, Abdulkhalik ZM, Noori ZS, Mohammad M. Phytochemical investigation And high-performance thin layer chromatography (HPTLC) identification of flavonoids and phenolic acids in Euphorbia cyathophora (Family: Euphorbiaceae) cultivated in Iraq. Ann Trop Med Public Health. 2020; 23, 232-.
Rajasudha V. & Manikandan, R. Phytochemical screening and High-performance liquid chromatography (HPLC) profile of different extracts of Euphorbia hirta (Linn). J Pharmacogn Phytochem. 2019; 8(1), 45-50.
Ang A, Sabesaje R, Barbosa G, Dela Cruz R, Mendez R, Enot, M. Cyclooxygenase (COX) AND 15-Lipoxygenase (15-LOX) Inhibitory Activity and HPTLC Profile of Asplenium nidus, Diplazium esculentum,and Drynaria quercifolia in Bukidnon, Philippines. Indones. J. Pharm. 2022; Doi:https://www.researchgate.net/publication/361306454.
Francis G, Andersen Q. Natural pigments. In Handbook of Thin-Layer Chromatography. Sherma J, Fried B, Eds.; Marcel Dekker Inc.: New York, USA 2003; 697.
Mukharjee PK. Quality control of herbal drugs-an approach to evaluation of botanicals 31st edition. New Delhi. Business Horizons Pharmaceuticals. Publications. 2002:183-97.
Bora J, Syiem D, Bhan S. Quantitative analysis of total phenolic, flavonoid. J. Pharmacog Phytother 2019;8:906-911.
Sonam M, Singh RP, Pooja S. Phytochemical screening and TLC profiling of various extracts of Reinwardtia indica. Int J Pharmacogn Phytochem. 2017;9(4):523-7.
Huang D, Ou B, Prior RL. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005; 53(6), 1841–1856. 10.1021/jf030723c.
Shahidi F, Ambigaipalan P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects: A review. J. Funct. Foods. 2016; 18, 820–897.
Munthe S, Riskainto R, Juvi D & Novia, D. Antioxidant, Total Phenolic, and Total Flavonoid of 70% Ethanol Extract of Avocado Seeds (Persea americana Mill.). Pharmacogn J. 2023;15,4,599-605. Doi:10.5530/pj.2023.15.126
Aloi S, Vaurasi V, Va’ai S, Latu FA, Imo T, Amosa P. A Pilot Study of the Phytochemical Composition of Ethanolic Extracts from Eight Samoan Medicinal Plants. Int. J. Sci. Res. 2019;9(10): 239-244
Bravo L. Polyphenols: chemistry, dietary sources, metabolism and nutritional significance. Nutr Rev. 1998; 56(11):317–333. Doi: 10.1111/j.1753-4887.1998.tb01670.x
Rizk, AF. The Chemical Constituents and Economic Plants of the Euphorbiaceae. Bot. J. Linn. 1987;94, 293-326.
Lallianrawna S, Muthukumaran R, Ralte V. Gurusubramanian, G., & Kumar, N. Determination of total phenolic content, total flavonoid content and total antioxidant capacity of Ageratina adenophora (Spreng.) King & Rob.2016; Doi: https/www.sciencevision.org
Ramadeep K & Geoffrey P. Antioxidant activity in different fractions of tomatoes. Int. Food Res. 2005;38,487-494
Sharma N, Samarakoon KW, Gyawali R, Park YH, Lee SJ, Oh SJ, Lee TH, Jeong DK. Evaluation of the antioxidant, anti-inflammatory, and anticancer activities of Euphorbia hirta ethanolic extract. Molecules. 2014 15;19(9):14567-81.
Trang NT, Thao HX, Ahn BT. Biochemical Composition, Polyphenol and Flavonoid Content, Antibacterial Activity of Leaf and Flower Extracts of Clerodendrum paniculatum Distributed In Thua Thien Hue Province, Vietnam. Trop J Nat Prod Res. 2024; 8(9):8275-8281
Soobrattee MA, Neergheen VS, Luximon-Ramma A, Aruoma OI, Bahorun T. Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutat. Res.-Fund. Mol. Mutagen. 2005; 579:200–213. doi: 10.1016/j.mrfmmm.2005.03.023.
Porwal M, Khan NA, Maheshwari KK. Evaluation of Acute and Subacute Oral Toxicity Induced by Ethanolic Extract of Marsdenia tenacissima Leaves in Experimental Rats. Sci. Pharm. 2017; 85, 29. Doi.org/10.3390/scipharm85030029
Muñoz M, Alvarado U, Reyes J, Watanabe K. Acute oral toxicity assessment of ethanolic extracts of Antidesma bunius (L.) Spreng fruits in mice. Toxicol Reports. 2021;8,1289-1299
Piyachaturawat P, Tubtim C, Chuncharunee A, Komaratat P, Suksamrarn A. Evaluation of the acute and subacute toxicity of a choleretic phloracetophenone in experimental animals. Toxicol. Lett. 2002;129(1–2):123–132. doi: 10.1016/S0378-4274(02)00006-1.
Phuyal N, Jha PK, Raturi PP, Rajbhandary S. In Vitro Antibacterial Activities of Methanolic Extracts of Fruits, Seeds, and Bark of Zanthoxylum armatum DC. J Trop Med. 2020; 2803063. Doi: 10.1155/2020/2803063.
Volken MC. Biological and phytochemical investigations of Euphorbiaceae from Papua New Guinea (Doctoral dissertation, ETH Zurich) 1999.
Frankova A, Vistejnova L, Merinas-Amo T, Leheckova Z, Doskocil I, Wong Soon J, Kudera T, Laupua F, Alonso-Moraga A & Kokoska L. In vitro antibacterial activity of extracts from Samoan medicinal plants and their effect on proliferation and migration of human fibroblasts. Ethnopharmacol.2020;.113220
Rodrigues P, Bangali H, Hammoud A. COX 2-inhibitors; a thorough and updated survey into combinational therapies in cancers. Med Oncol. 2024;41(1):41. https://doi.org/10.1007/s12032-023-02256-7
Vane JR. Introduction: Mechanism of action of NSAIDs. Rheumatology, 1996; 35, 1-3.
Bonner A, Fry M. Development of a fluorescence-based assay to detect cyclooxygenase inhibitory activity of δ - lactone derivatives.22nd Annual Argonne Symposium for Undergraduates 2012; Central States Incorporated, Argonne National
Patrignani P, Tacconelli S, Sciulli M, Capone, M. New insights into COX-2 biology and inhibition. Brain Res. Rev. 2005; 48(2), 352-359.
Liu Z, Li Z, Bai J, Meng D, Li N, Pei Y, Hua P. Anti-inflammatory diterpenoids from the roots of Euphorbia ebracteolata. J Nat Prod. 2014; 25;77(4):792–9.
Primiani CN, Sari DR, Krisnamurti GC, Pujiati P, Setiawan MA. Anti-Inflammatory Potentials of Elaeocarpus sphaericus Schum Fruit Compounds by Molecular Docking Approach. Trop J Nat Prod Res. 2022; 6(10):1663-1669
Kang O, Choi J, Lee J, & Kwon D. Luteolin isolated from the flowers of Lonicera japonica suppresses inflammatory mediator release by blocking NF-κB and MAPKs activation pathways in HMC-1 cells. Molecules. 2010; 15, 385–398
Salaritabar A, Darvishi B, Hadjiakhoondi F, Manayi A, Sureda, A, Nabavi, S, Bishayee A. Therapeutic potential of flavonoids in inflammatory bowel disease: A comprehensive review. World J. Gastroenterol. 2017; 23, 5097–5114.