Analysis of Active Compounds and In Silico Study of Vigna unguiculata as an Anti-Alzheimer Disease Agent
Main Article Content
Abstract
β-secretase and butyrylcholinesterase have a role in the pathogenesis of Alzheimer’s Disease (AD). AD is a disease characterized by a progressive decline in cognitive, memory function and other important mental functions. This disease often occurs in older people. Vigna unguiculata is a Leguminaceae plant known to contain secondary metabolites (flavonoids, phenols, alkaloids, and terpenoids). Previous researchers have proven that V. unguiculata has the potential to prevent AD. However, the active compounds (s) that possess anti-Alzheimer’s Disease effects are unknown. The research aims to analyze the content of the active ingredients in ethanolic seeds extract of V. unguiculata and predict the affinity of the compounds for β-secretase (2OHM) and butyrylcholinesterase (4XII) enzymes using the in silico method. Active compounds of V. unguiculata seeds ethanolic extract were identified using Liquid Chromatography High-Resolution Mass Spectrometry (LC-HRMS). Affinity predictions of active compounds in inhibiting the enzymes were carried out computationally using Autodoc Vina. Indicators of the affinity of the active compounds for the two enzymes are shown by the binding free energy (∆G) value and the structural similarity between the ligands compared to natural ligands. Visualisation of docking was done using Biovia Drug Discovery Studio. Quercetin, vitexin, epicatechin, and N-acetyl-DL-tryptophan were some active compounds that showed a lower ∆G and structural similarity between 40-75% compared to the control. The active compounds in V. unguiculata seeds extract are predicted to have potential in AD prevention by inhibiting β secretase and butyrylcholinesterase implicated in AD.
Downloads
Article Details
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer’s Disease: Pathogenesis, diagnostics, and therapeutics. Int J. Nanomedicine. 2019;14:5541-5554. Doi: 10.2147/IJN.S200490
Huang WJ, Zhang X, Chen WW. Role of oxidative stress in Alzheimer’s Disease. Biomed Rep. 2016; 4(5):519-522. Doi: 10.3892/br.2016.630.
Long JM, Holtzman DM. Alzheimer Disease: An update on pathobiology and treatment strategies. Cell. 2019; 179(2):312-339. Doi: 10.1016/j.cell.2019.09.001
Pais M, Martinez L, Ribeiro O, Loureiro J, Fernandez R, Valiengo L, Canineu P, Stella F, Talib L, Radanovic M, Forlenza OV. Early diagnosis and treatment of Alzheimer’s Disease: new definitions and challenges. Braz J Psychiatry. 2020; 42(4):431-441. Doi: 10.1590/1516-4446-2019-0735.
Boix, C.P., Lopez-Font,I., Cuchillo-Ibañez,I. Amyloid precursor protein glycosylation is altered in the brain of patients with Alzheimer’s Disease. Alz Res Therapy. 2020; 12, 96. https://doi.org/10.1186/s13195-020-00664-9.
Sharma C, Kim SR. Linking oxidative stress and proteinopathy in Alzheimer’s Disease. Antioxidants (Basel). 2021;10(8):1231. doi: 10.3390/antiox10081231.
Lavado LK, Zhang MH, Patel K, Khan S, Patel UK. Biometals as potential predictors of the neurodegenerative decline in Alzheimer’s Disease. Cureus. 2019;1(9):e5573. Doi: 10.7759/cureus.5573.
Rossi M, Freschi M, de Camargo NL, Salerno A, de Melo SVT, Nachon F, Chantegreil F, Soukup O, Prchal L, Malaguti M, Bergamini C. Sustainable drug discovery of multi-target-directed ligands for Alzheimer’s disease. J Med Chem. 2021;64(8):4972-90. Doi: 10.1021/acs.jmedchem.1c00048.
Chen ZR, Huang JB, Yang SL, Hong FF. Role of cholinergic signalling in Alzheimer’s Disease. Molecules. 2022; 27(6):1816. Doi: 10.3390/molecules27061816.
Ministry of Health. Main results of Riskesdas 2018. Health research and development agency. Ministry of health of the republic of Indonesia. 2018. Jakarta.
Welz AN, Emberger-Klein A, Menrad K. Why people use herbal medicine: insights from a focus-group study in Germany. BMC Complement Altern Med. 2018; 18(1):92. Doi: 10.1186/s12906-018-2160-6.
Santoso B. Effect of Gridbox volume on compound docking in Stelechocarpus Burahol to the anti-inflammatory homologous protein TRPV1. Conference: The 6th University Research Colloquium. 2017; http://journal.ummgl.ac.id/index.php/urecol/article/view/1369.Muhammadiyah University of Magelang. ISSN 2407-9189.
Carneiro da Silva A, de Freitas BM, Bento da Silva P, Peres de Oliveira J, Loureiro da Silva T, Lopes DTJ. Health benefits and industrial applications of functional cowpea seed proteins [Internet]. Grain and seed proteins functionality. IntechOpen. 2021; 1-2: Doi : 10.5772/intechopen.96257.
Kipkemoi DJ, Ireri AM, Ngugi MP. Cognitive enhancing properties of aqueous leaf extract of Vigna Unguiculata in ketamine-induced memory damage in mice. J Adv Biotechnol Exp Ther. 2022; 6(1): 231-242. Doi: 10.5455/jabet.2023.d121
Rivero-Pino F. Millan-Linares M, Montserrat-de la Paz S. Strengths and limitations of in silico tools to assess physicochemical properties, bioactivity, and bioavailability of food-derived peptides. Trends Food Sci. Technol. 2023; 138. Doi :10.1016/j.tifs.2023.06.023.
Mohanty M, Mohanty PS. Molecular docking in organic, inorganic, and hybrid systems: a tutorial review. Monatsh Chem. 2023;1-25. https://doi.org/10.1007/s00706-023-03076-1
Permatasari A, Batubara I, Nursid M. Effect of ethanol concentration and maceration time on yield, total phenol content, and antioxidant activity of Padina australis seaweed extract. Biosfera. 2020; 2. 78-84.
DOI:10.20884/1.mib.2020.37.2.1192.
Dwiyanti RD, Thuraidah A , Nurlailah N. Phytochemical Analysis by LC-HRMS and Antibacterial Activity Of the Ethanol Extract of Sengkuang (Dracontomelon dao (Blanco) Merr. & Rofe). Med. Lab. Technol. 2023; 9(1). https://doi.org/10.31964/mltj.v9i1.506
Maden SF, Sezer S, Acuner SE. Fundamentals of molecular docking and comparative analysis of protein–small-molecule docking approaches [Internet]. IntechOpen. 2023; Doi: 10.5772/intechopen.105815
Seddoqi S, Aouinti F, Conte R, Elhachlafi N, Gseyra N. Exploring phytochemical composition, antioxidant, antibacterial properties, and in silico study of aqueous leaf extract of Pistacia lentiscus L. from the Eastern Region of Morocco. Trop J Nat Prod Res. 2024;8(4):6891-900. https://doi.org/10.26538/tjnpr/v8i4.20
Puspita L, Purwanto B, Wasita B, Dewi YL, Widyaningsih V, Suhendi A. Antianaemic potential of flavonoids from ajwa date fruits: An in silico study. Trop J Nat Prod Res.. 2024;8(4):6832-9. https://doi.org/10.26538/tjnpr/v8i4.12
Du X, Li Y, Xia YL, Ai SM, Liang J, Sang P, Ji XL, Liu SQ. Insights into protein-ligand interactions: mechanisms, models, and methods. Int J Mol Sci. 2016; 17(2):144. Doi: 10.3390/ijms17020144.
Razgonova MP, Burlyaeva MO, Zinchenko YN, Krylova EA, Chunikhina OA, Ivanova NM, Zakharenko AM, Golokhvast KS. Identification and spatial distribution of bioactive compounds in seeds Vigna unguiculata (L.) Walp. by laser microscopy and tandem mass spectrometry. Plants. 2022; 11(16):2147. https://doi.org/10.3390/plants11162147
Yuan J, Liu X, Liu C, Ang AF, Massaro J, Devine SA, Auerbach SH, Blusztajn JK, Au R, Jacques PF. Is dietary choline intake related to dementia and Alzheimer’s Disease risks? Results from the Framingham Heart Study. Am J Clin Nutr. 2022; 116(5):1201-1207. Doi: 10.1093/ajcn/nqac193
Chartampila E, Elayouby KS, Leary P, LaFrancois JJ, Alcantara-Gonzalez D, Jain S, Gerencer K, Botterill JJ, Ginsberg SD, Scharfman HE. Choline supplementation in early life improves, and low levels of choline can impair outcomes in a mouse model of Alzheimer’s Disease. eLife. 2024; 9:2023.05.12.540428. Doi: 10.1101/2023.05.12.540428.
Savonije K, Weaver DF. The role of tryptophan metabolism in Alzheimer’s Disease. Brain Sci . 2023; 9;13(2):292. Doi: 10.3390/brainsci13020292.
Varshney H, Siddique YH. Pharmacological attributes of fenugreek with special reference to Alzheimer’s Disease. Curr Alzheimer Res. 2023;20(2):71-79. Doi: 10.2174/1567205020666230525154300
Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci.2016; 5:e47 2016;5:e47. Doi: 10.1017/jns.2016.41
Awouafack MD, Tane P, Morita H. Isolation and structure characterisation of flavonoids. InTechopen. 2017; 46-58. Doi: 10.5772/67881
da Silva Mesquita R, Kyrylchuk A, de Oliveira RC, Costa Sá IS, Camargo GCB, Pontes GS, da Silva FMA, Nunomura RCS, Grafov A. Alkaloids of Abuta panurensis Eichler: In silico and in vitro study of acetylcholinesterase inhibition, cytotoxic and immunomodulatory activities. PLoS One. 2020; 29;15(9):e0239364. Doi: 10.1371/journal.pone.0239364
Lima LKF, Pereira SKS, Junior RDSS, Santos FPDS, Nascimento AS, Feitosa CM, Figuerêdo JS, Cavalcante ADN, Araújo ECDC, Rai M. A brief review on the neuroprotective mechanisms of vitexin. Biomed Res Int, 2018; 4785089. 2018; 4785089. Doi: 10.1155/2018/4785089.
Ayuda-Durán B, Garzón-García L, González-Manzano S, Santos-Buelga C, González-Paramás AM. Insights into the neuroprotective potential of epicatechin: effects against aβ-induced toxicity in Caenorhabditis elegans. Antioxidants. 2024 ; 13(1):79. https://doi.org/10.3390/antiox13010079
Albracht-Schulte K, Kalupahana NS, Ramalingam L, Wang S, Rahman SM, Robert-McComb J, Moustaid-Moussa N. Omega-3 fatty acids in obesity and metabolic syndrome: a mechanistic update. J Nutr Biochem. 2018; 58:1-16. Doi: 10.1016/j.jnutbio.2018.02.012.
Hartnett KB, Ferguson BJ, Hecht PM, Schuster LE, Shenker JI, Mehr DR, Fritsche KL, Belury MA, Scharre DW, Horwitz AJ. Potential neuroprotective effects of dietary omega-3 fatty acids on stress in Alzheimer’s Disease. Biomolecules. 2023; 13(7):1096. https://doi.org/10.3390/biom13071096
Galeana-Ascencio RA, Mendieta L, Limon DI, Gnecco D, Terán JL, Orea ML, Carrasco-Carballo A. β-Secretase-1: In silico drug reposition for Alzheimer’s Disease. Int J Mol Sci. 2023; 24(9):8164. Doi: 10.3390/ijms24098164
Frimayanti N, Aryani F, Rishanti N, & Yaeghoobi M. In Silico Analysis Towards Exploring Potential β Secretase 1 (BACE1) Inhibitors; The Cause of Alzheimer Disease. J. Phys. Conference Series, 2021; 204911001 IOP Publishing Doi:10.1088/1742-6596/2049/1/011001