Argan Oil Mitigates Oxidative Stress Induced by Chronic Alcohol Consumption in Rats: An In Vivo and In Silico Study with Computational ADMET and Molecular Docking Analysis
Main Article Content
Abstract
The escalating issue of excessive alcohol consumption poses a significant health concern, leading to various disruptions across multiple physiological pathways. Argan oil (AO), derived from the fruit of “Argania spinosa L”, an indigenous tree native to southwestern Morocco, is renowned for its diverse health and well-being advantages. In this study, we focused on the impact of alcohol on the oxidation-reduction system, a critical aspect frequently influenced by alcohol. To investigate the potential mitigating effects of argan oil on oxidative stress, we employed three distinct treatment groups of rats: (1) alcohol-treated (3 g/kg), (2) alcohol (3 g/kg) and argan oil-treated (10 ml/kg), and (3) water-treated (control). Following a one-month treatment period, the rats were sacrificed, and their organs were utilized for biochemical assays. Results revealed that argan oil treatment significantly mitigated oxidative stress markers, as evidenced by a reduction in malondialdehyde (MDA) levels and restoration of antioxidant enzyme activities, such as superoxide dismutase (SOD) and catalase (CAT), toward normal levels. At the molecular level, ADMET and docking analyses demonstrated favorable binding interactions between argan oil molecules and proteins implicated in oxidative stress pathways. These findings underscore the potential of argan oil to restore equilibrium in the oxidation-reduction system, offering neuroprotective and antioxidant effects. This study provides foundational insights into the protective effects of argan oil against alcohol-induced oxidative damage, highlighting its potential as a therapeutic agent.
Downloads
Article Details
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Farber NB, Creeley CE, Olney JW. Alcohol-induced neuroapoptosis in the fetal macaque brain. Neurobiol Dis. 2010;37(2):287–295. https://doi.org/10.1016/j.nbd.2010.05.025
Feldstein Ewing SW, Sakhardande A, Blakemore SJ. The effect of alcohol consumption on the adolescent brain: A systematic review of MRI and fMRI studies of alcohol-using youth. Neuroimage Clin. 2014; 5:420–437. https://doi.org/10.1016/j.nicl.2014.06.011
Spear LP. Adolescents and alcohol: Acute sensitivities, enhanced intake, and later consequences. Neurotoxicol. 2013; 37:47–57. https://doi.org/10.1016/j.ntt.2013.11.006
Bishehsari F, Magno E, Swanson G, Desai V, Voigt RM, Forsyth CB, Keshavarzian A. Alcohol and gut-derived inflammation. Alcohol Res. 2017; 38(2):163–171.
Heng K, Hargarten S, Layde P, Craven A, Zhu S. Moderate alcohol intake and motor vehicle crashes: The conflict between health advantage and at-risk use. Alcohol Alcohol. 2006; 41(4):451–454. https://doi.org/10.1093/alcalc/agh258
Schoppet M, Maisch B. Alcohol and the heart. Herz. 2001; 26(5):345–352. https://doi.org/10.1007/pl00002037
Burton A. Acetaldehyde links alcohol consumption to cancer. Lancet Oncol. 2005; 6(9):643. https://doi.org/10.1016/s1470-2045(05)70303-x
Setshedi M, Wands JR, De La Monte SM. Acetaldehyde adducts in alcoholic liver disease. Oxid Med Cell Longev. 2010; 3(3):178–185. https://doi.org/10.4161/oxim.3.3.12288
Nakamura K, Iwahashi K, Furukawa A, Ameno K, Kinoshita H, Ijiri I, Sekine Y, Suzuki K, Iwata Y, Minabe Y, Mori N. Acetaldehyde adducts in the brain of alcoholics. Arch Toxicol. 2003; 77(10):591–593. https://doi.org/10.1007/s00204-003-0465-8
Serio RN, Gudas LJ. Modification of stem cell states by alcohol and acetaldehyde. Chem Biol Interact. 2020; 316:108919. https://doi.org/10.1016/j.cbi.2019.108919
Guo R, Jun R. Alcohol and acetaldehyde in public health: From marvel to menace. Int J Environ Res Public Health. 2010; 7(4):1285–1301. https://doi.org/10.3390/ijerph7041285
Eriksson CJP. The role of acetaldehyde in the actions of alcohol (Update 2000). Alcohol Clin Exp Res. 2001; 25:15–32. https://doi.org/10.1097/00000374-200105051-00005
Cederbaum AI. Alcohol metabolism. Clin Liver Dis. 2012; 16(4):667–685. https://doi.org/10.1016/j.cld.2012.08.002
Lieber CS. Metabolism of alcohol. Clin Liver Dis. 2005; 9(1):1–35. https://doi.org/10.1016/j.cld.2004.10.005
Lieber CS. Alcohol and the liver: Metabolism of alcohol and its role in hepatic and extrahepatic diseases. Mt Sinai J Med. 2000; 67(1):84–94. https://doi.org/10.1016/j.cld.2004.10.005
Ho MF, Zhang C, Zhang L, Moon I, Geske J, Choi DS, Biernacka J, Oesterle T, Frye M, Seppala M, Li H, Karpyak V, Weinshilboum R. Acamprosate—an anti-craving drug for alcohol use disorder pharmacotherapy: Plasma metabolomics signatures are associated with alcohol craving intensity and acamprosate treatment response. Biol Psychiatry. 2021; 89(9):139–140. https://doi.org/10.1016/j.biopsych.2021.02.359
Ho MP, Yo CH, Liu CM, Chen CL, Lee CC. Refractive hypotension in a patient with disulfiram-ethanol reaction. Am J Med Sci. 2007; 333(1):53–55. https://doi.org/10.1097/00000441-200701000-00007
Kleczkowska P, Sulejczak D, Zaremba M. Advantages and disadvantages of disulfiram co-administered with popular addictive substances. Eur J Pharmacol. 2021; 904:174143. https://doi.org/10.1016/j.ejphar.2021.174143
Fuller RK, Roth HP. Disulfiram for the treatment of alcoholism: An evaluation in 128 men. Ann Intern Med. 1979; 90(6):901–4. https://doi.org/10.7326/0003-4819-90-6-901-904
Bahbiti Y, Ammouri H, Berkiks I, Hessni A El, Ouichou A, Nakache R, Chakit M, Bikjdaouene L, Mesfioui A. Anticonvulsant effect of argan oil on pilocarpine model induced status epilepticus in Wistar rats. Nutr Neurosci. 2018;21(2):116–122. https://doi.org/10.1080/1028415X.2016.1228492
Drissi A, Girona J, Cherki M, Godàs G, Derouiche A, El Messal M, Saile R, Kettani A, Solà R, Masana L, Adlouni A. Evidence of hypolipemiant and antioxidant properties of argan oil derived from the argan tree (Argania spinosa). Clin Nutr. 2004; 23(5):1159–1166. https://doi.org/10.1016/j.clnu.2004.03.003
Aydın B. Effects of argan oil on the mitochondrial function, antioxidant system and the activity of NADPH-generating enzymes in acrylamide-treated rat brain. Biomed Pharmacother. 2017; 87:476–481. https://doi.org/10.1016/j.biopha.2016.12.124
Bekkouch O, Harnafi M, Touiss I, Khatib S, Harnafi H, Alem C, Amrani S. In vitro antioxidant and in vivo lipid-lowering properties of Zingiber officinale crude aqueous extract and methanolic fraction: A follow-up study. Evid Based Complement Alternat Med. 2019; 2019:9734390. https://doi.org/10.1155/2019/9734390
Charrouf Z, Guillaume D. Argan oil: Occurrence, composition and impact on human health. Eur J Lipid Sci Technol. 2008; 110(7):632–636. https://doi.org/10.1002/ejlt.200700220
El Abbassi A, Khalid N, Zbakh H, Ahmad A. Physicochemical characteristics, nutritional properties, and health benefits of argan oil: A review. Crit Rev Food Sci Nutr. 2014; 54(11):1401–1414. https://doi.org/10.1080/10408398.2011.638424
Berrada Y, Settaf A, Baddouri K, Cherrah A, Hassar M. Experimental evidence of an antihypertensive and hypocholesterolemic effect of oil of argan (Argania sideroxylon). Therapie. 2000; 55(3):375–378.
El Kharrassi Y, Samadi M, Lopez T, Nury T, El Kebbaj R, Andreoletti P, Hajj H, Vamecq J, Moustaid K, Latruffe N, Saïd El Kabbaj M, Masson D, Lizard G, Nasser B, Cherkaoui-Malki M. Biological activities of schottenol and spinasterol, two natural phytosterols present in argan oil and in cactus pear seed oil, on murine microglial BV2 cells. Biochem Biophys Res Commun. 2014; 446(3):798–804. https://doi.org/10.1016/j.bbrc.2014.02.074
Adlouni A. Argan oil: From nutrition to health. Phytotherapie. 2010; 8(2):89–97. https://doi.org/10.1007/s10298-010-0538-9
El Monfalouti H, Guillaume D, Denhez C, Charrouf Z. Therapeutic potential of argan oil: A review. J Pharm Pharmacol. 2010; 62(12):1669–1675. https://doi.org/10.1111/j.2042-7158.2010.01190.x
Gharby S, Harhar H, Guillaume D, Haddad A, Matthäus B, Charrouf Z. Oxidative stability of edible argan oil: A two-year study. LWT Food Sci Technol. 2011; 44(1):1–8. https://doi.org/10.1016/j.lwt.2010.07.003
Khong NMH, Chan KW. Biological activities of argan (Argania spinosa L.) oil: Evidence from in vivo studies. Multiple Biological Activities of Unconventional Seed Oils. 2022; 295–316. https://doi.org/10.1007/s12247-021-09480-9
Guerrouj B El, Taibi M, Elbouzidi A, Bouhassoun S, Loukili EH, Moubchir T, Haddou M, Hammouti Y, Khoulati A, Addi M, Chaabane K, Asehraou A, Bellaouchi R. The effect of altitude on the chemical composition, antioxidant, and biological activities of Eucalyptus globulus Labill. essential oils. Trop J Nat Prod Res. 2023; 7(11):5279–5285. https://doi.org/10.26538/tjnpr/v7i11.37
Loukili EH, Ouahabi S, Elbouzidi A, Taibi M, Yahyaoui MI, Asehraou A, Azougay A, Saleh An Al Kamaly O, Parvez MK, El Guerrouj B, Touzani R, Ramdani M. Phytochemical composition and pharmacological activities of three essential oils collected from eastern Morocco (Origanum compactum, Salvia officinalis, and Syzygium aromaticum): A comparative study. Plants. 2023; 12(19):3376. https://doi.org/10.3390/plants12193376
Hicham EM, Tariq T, Abderrahim L, Ali O, Aboubaker E, Abdelhalim M. Cognitive impairments induced by adolescent binge-like ethanol in rats: Neuroprotective role of argan oil. Addict Res. 2018; 2(1). https://doi.org/10.33425/2639-8451.1011
El Mostafi H, Elhessni A, Touil T, Ouichou A, Laaziz A, Doumar H, Mesfioui A. Argan oil supplementation attenuates voluntary ethanol consumption and withdrawal syndrome promoted by adolescent intermittent ethanol in rats. Alcohol. 2020; 87:39–50. https://doi.org/10.1016/j.alcool.2020.04.007
Lim YW, Meyer NP, Shah AS, Budde MD, Stemper BD, Olsen CM. Voluntary alcohol intake following blast exposure in a rat model of mild traumatic brain injury. Behav Brain Res. 2015; 286. 293-299 PMC4409117. https://doi.org/10.1016/j.bbr.2015.03.014
Bahbiti Y, Ammouri H, Berkiks I, Hessni A El, Ouichou A, Nakache R, Chakit M, Bikjdaouene L, Mesfioui A. Anticonvulsant effect of argan oil on pilocarpine model-induced status epilepticus in Wistar rats. Nutr Neurosci. 2018;21(2):116–122. https://doi.org/10.1080/1028415X.2016.1228492
Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness, and medicinal chemistry friendliness of small molecules. Sci Rep. 2017; 7:42717. https://doi.org/10.1038/srep42717
Pires DEV, Blundell TL, Ascher DB. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem. 2015; 58(9):4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
Sharma S, Sharma A, Gupta U. Molecular docking studies on the antifungal activity of Allium sativum (garlic) against mucormycosis (black fungus) by BIOVIA discovery studio visualizer 21.1. Ann Antivirals Antiretrovirals. 2021; 5(1):28–32. https://doi.org/10.21203/rs.3.rs-888192/v1
Fajriyah NN, Mugiyanto E, Rahmasari KS, Nur AV, Najihah VH, Wihadi MNK, Merzouki M, Challioui A, Vo TH. Indonesia herbal medicine and its active compounds for anti-diabetic treatment: A systematic mini-review. Moroccan J Chem. 2023; 11(4):11–4. 948-964. https://doi.org/10.48317/IMIST.PRSM/morjchem-v11i04.40481
Docking and scoring—Schrödinger . 2024 [Available from: https://www.schrodinger.com/
Boumezzourh A, Ouknin M, Merzouki M, Dabbous-Wach A, Hammouti B, Umoren PS, Costa J, Challioui A, Umoren SA, Majidi L. Acetylcholinesterase, tyrosinase, and α-glucosidase inhibition by Ammodaucus leucotrichus Coss. & Dur. fruits essential oil and ethanolic extract and molecular docking analysis. Moroccan J Chem. 2023; 11(4):11–4.1287-1298 https://doi.org/10.48317/IMIST.PRSM/morjchem-v11i04.43316
Quirk TJ. One-way analysis of variance (ANOVA). In: Excel 2007 for educational and psychological statistics. 2012;163–179. https://doi.org/10.1007/978-3-319-39489-3_8
Heiberger RM, Neuwirth E. One-way ANOVA. In: R Through Excel. 2009; 165–191. https://doi.org/10.1007/978-1-4419-0052-4_7
anesthesiology TKK journal of, 2017 undefined. Understanding one-way ANOVA using conceptual figures. synapse.koreamed.org , 70, 1, 22-26 Available from: https://doi.org/10.4097/kjae.2017.70.1.22
Mashhadi Z, Newcomer ME, Brash AR. The Thr–His connection on the distal heme of catalase-related hemoproteins: A hallmark of reaction with fatty acid hydroperoxides. ChemBioChem. 2016; 17(21):2000–2006. https://doi.org/10.1002/cbic.201600345
Bekkouch A, Mostafi H El, Merzouki M, Touzani R, Hessni A El, Challioui A, Mesfioui A, Touzani R. Potential inhibition of ALDH by argan oil compounds: Computational approach by docking, ADMET, and molecular dynamics. Moroccan J Chem. 2024; 12(2):676–695. https://doi.org/10.48317/IMIST.PRSM/morjchem-v12i2.41774
GAO XM, Dong WH, Xia CL, Ma ZY, Wang Y, Sarra S, Xu HM, Qi WY. Centranthera grandiflore alleviates alcohol-induced oxidative stress and cell apoptosis. Chin J Nat Med. 2022; 20(8):572–579. https://doi.org/10.1016/S1875-5364(22)60181-X
Sha’fie MSA, Rathakrishnan S, Hazanol IN, Dali MHI, Khayat ME, Ahmad S, Hussin Y, Alitheen NB, Jiang LH, Syed Mortadza SA. Ethanol induces microglial cell death via the NOX/ROS/PARP/TRPM2 signaling pathway. Antioxidants. 2020; 9(12):1253. https://doi.org/10.3390/antiox9121253