Anti-endometrial Cancer Activity of Hedyotis diffusa Willd and its Phytochemicals by Experimental and In Silico Analysis

Main Article Content

Kuok Chiufai
Li Chenyu
Kou Chiian
Loi Manin
Meng Lirong
Pedro Fong

Abstract

Hedyotis diffusa Willd (HDW) injection is a clinically approved herbal medicine for various cancer therapies in China. This study aims to investigate HDW injection on endometrial cancer (EC), which is currently not an indication of HDW. Cytotoxicity and flow cytometric analysis were employed to study the inhibition and apoptosis of EC cells under various concentrations of HDW injection, cisplatin, and their combination. In silico docking simulations were used to predict the binding affinities between the phytochemicals of HDW and the EC therapeutic target, A3 adenosine receptors (A3ARs). FAF-Drugs 4 was used to study the drug-like properties of the phytochemicals. The HDW injection inhibited the growth and caused apoptosis of EC cells. HDW and cisplatin produced more potent inhibition effects than their individual use. The phytochemicals 5-demethylsinensetin, 5-demethylnobiletin and 5-hydroxy-6,7,3,4-quatermethoxyflavonoid obtained the highest docking score with acceptable drug-like properties for oral administration. The HDW injection and the in silico identified A3ARs inhibitors have a high potential for further investigations to develop an effective and safe EC treatment. 

Downloads

Download data is not yet available.

Article Details

How to Cite
Chiufai, K., Chenyu, L., Chiian, K., Manin, L., Lirong, M., & Fong, P. (2022). Anti-endometrial Cancer Activity of Hedyotis diffusa Willd and its Phytochemicals by Experimental and In Silico Analysis. Tropical Journal of Natural Product Research (TJNPR), 6(5), 754-761. https://tjnpr.org/index.php/home/article/view/55
Section
Articles

How to Cite

Chiufai, K., Chenyu, L., Chiian, K., Manin, L., Lirong, M., & Fong, P. (2022). Anti-endometrial Cancer Activity of Hedyotis diffusa Willd and its Phytochemicals by Experimental and In Silico Analysis. Tropical Journal of Natural Product Research (TJNPR), 6(5), 754-761. https://tjnpr.org/index.php/home/article/view/55

References

Doherty MT, Sanni OB, Coleman HG, Cardwell CR, McCluggage WG, Quinn D, Wylie J, McMenamin ÚC. Concurrent and future risk of endometrial cancer in women with endometrial hyperplasia: A systematic review and metaanalysis. PloS one. 2020; 15(4):e0232231.

Morice P, Leary A, Creutzberg C, Abu-Rustum N, Darai E. Endometrial cancer. The Lancet. 2016; 387(10023):1094-1108.

Clarke-Pearson DL andGeller EJ. Complications of hysterectomy. Obstet Gynecol. 2013; 121(3):654-673.

Neri M, Peiretti M, Melis GB, Piras B, Vallerino V, Paoletti AM, Madeddu C, Scartozzi M, Mais V. Systemic therapy for the treatment of endometrial cancer. Expert Opin Pharmacother. 2019; 20(16):2019-2032.

Karataşlı V, Can B, Çakır İ, Erkılınç S, Kuru O, Gökçü M, Sancı M. Life quality of endometrioid endometrial cancer survivors: a cross-sectional study. J Obstet Gynaecol. 2021; 41(4):621-625.

Chen D, Zhao J, Cong W. Chinese herbal medicines facilitate the control of chemotherapy-induced side effects in colorectal cancer: progress and perspective. Front Pharmacol. 2018; 9:1442.

Li S, So TH, Tang G, Tan HY, Wang N, Ng BF, Chan CK, Yu EC, Feng Y. Chinese herbal medicine for reducing chemotherapy-associated side-effects in breast cancer patients: a systematic review and meta-analysis. Front Oncol. 2020;10:599073.

Wang Z, Qi F, Cui Y, Zhao L, Sun X, Tang W, Cai P. An update on Chinese herbal medicines as adjuvant treatment of anticancer therapeutics. Biosci Trends. 2018; 12(3):220-239.

Yeh YC, Chen HY, Yang SH, Lin YH, Chiu JH, Lin YH, Chen JL. Hedyotis Diffusa combined with Scutellaria Barbata are the core treatment of Chinese herbal medicine used for breast cancer patients: a population-based study. Evid-Based Compl Altern Med. 2014; 2014:202378.

Chen R, He J, Tong X, Tang L, Liu M. The Hedyotis Diffusa Willd (Rubiaceae): a review on phytochemistry, pharmacology, quality control and pharmacokinetics. Molecules. 2016; 21(6):710.

Wang C, Zhou X, Wang Y, Wei D, Deng C, Xu X, Xin P, Sun S. The antitumor constituents from Hedyotis Diffusa willd. Molecules. 2017; 22(12):2101.

Lin J, Wei L, Xu W, Hong Z, Liu X, Peng J. Effect of Hedyotis Diffusa Willd extract on tumor angiogenesis. Mol Med Rep. 2011; 4(6):1283-1288.

Zhang L, Zhang J, Qi B, Jiang G, Liu J, Zhang P, Ma Y, Li W. The anti-tumor effect and bioactive phytochemicals of Hedyotis Diffusa Willd on ovarian cancer cells. J Ethnopharmacol. 2016; 192:132-139.

Su X, Li Y, Jiang M, Zhu J, Zheng C, Chen X, Zhou J, Li Y, Xiao W, Wang Y. Systems pharmacology uncover the mechanism of anti-non-small cell lung cancer for Hedyotis Diffusa Willd. Biomed Pharmacother. 2019; 109:969-984.

Chen XZ, Cao ZY, Chen TS, Zhang YQ, Liu ZZ, Su YT, Liao LM, Du J. Water extract of Hedyotis Diffusa Willd suppresses proliferation of human HepG2 cells and potentiates the anticancer efficacy of low-dose 5-fluorouracil by inhibiting the CDK2-E2F1 pathway. Oncol Rep. 2012; 28(2):742-748.

Li Q, Wang X, Shen A, Zhang Y, Chen Y, Sferra TJ, Lin J, Peng J. Hedyotis Diffusa Willd overcomes 5-fluorouracil resistance in human colorectal cancer HCT-8/5-FU cells by downregulating the expression of P-glycoprotein and ATPbinding casette subfamily G member 2. Exp Ther Med. 2015; 10(5):1845-1850.

Han X, Zhang X, Wang Q, Wang L, Yu S. Antitumor potential of Hedyotis DiffusaWilld: A systematic review of bioactive constituents and underlying molecular mechanisms. Biomed Pharmacother. 2020; 130:110735.

Niu Y and Meng QX. Chemical and preclinical studies on Hedyotis Diffusa with anticancer potential. J Asian Nat Prod Res. 2013; 15(5):550-565.

Song Y, Wang H, Pan Y, Liu T. Investigating the multi-target pharmacological mechanism of Hedyotis Diffusa Willd acting on prostate cancer: a network pharmacology approach. Biomolecules. 2019; 9(10):591.

Liu X, Wu J, Zhang D, Wang K, Duan X, Zhang X. A network pharmacology approach to uncover the multiple mechanisms of Hedyotis Diffusa Willd on colorectal cancer. Evid-Based Compl Altern Med. 2018; 2018:6517034.

Urick ME and Bell DW. Clinical actionability of molecular targets in endometrial cancer. Nat Rev Cancer. 2019; 19(9):510-521.

Fong P, Ao CN, Tou KI, Huang KM, Cheong CC, Meng LR. Experimental and in silico analysis of cordycepin and its derivatives as endometrial cancer treatment. Oncol Res. 2019; 27(2):237.

Yoon SY, Park SJ, Park YJ. The anticancer properties of cordycepin and their underlying mechanisms. Int J Mol Sci. 2018; 19(10):3027.

So TH, Chan SK, Lee VF, Chen BZ, Kong FM, Lao LX. Chinese medicine in cancer treatment–how is it practised in the East and the West? Clin Oncol. 2019; 31(8):578-588.

Kazemi MH, RaoofiMohseni S, Hojjat‐Farsangi M, Anvari E, Ghalamfarsa G, Mohammadi H, Jadidi‐Niaragh F. Adenosine and adenosine receptors in the immunopathogenesis and treatment of cancer. J Cell Physiol. 2018; 233(3):2032-2057.

Hannen R and Bartsch JW. Essential roles of telomerase reverse transcriptase hTERT in cancer stemness and metastasis. FEBS Lett. 2018; 592(12):2023-2031.

Tolosa L, Donato MT, Gómez-Lechón MJ. General Cytotoxicity Assessment by Means of the MTT Assay. Methods Mol Biol Clifton NJ. 2015;

:333-348.

Sulimov VB, Kutov DC, Sulimov AV. Advances in docking. Curr Med Chem. 2019; 26(42):7555-7580.

Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic algorithm for flexible docking. J Mol Biol. 1997; 267(3):727-748.

Floris M, Sabbadin D, Medda R, Bulfone A, Moro S. Adenosiland: walking through adenosine receptors landscape. Eur J Med Chem. 2012;

:248-257.

Kar S and Leszczynski J. Open access in silico tools to predict the ADMET profiling of drug candidates. Expert Opin Drug Discov. 2020; 15(12):1473-1487.

Lagorce D, Bouslama L, Becot J, Miteva MA, Villoutreix BO. FAF-Drugs4: free ADME-tox filtering computations for chemical biology and early stages drug discovery. Bioinforma Oxf Engl. 2017; 33(22):3658-3660.

Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002; 45(12):2615-2623.

Egan WJ, Merz KM, Baldwin JJ. Prediction of drug absorption using multivariate statistics. J Med Chem. 2000; 43(21):3867-3877.

Delaney JS. ESOL: estimating aqueous solubility directly from molecular structure. J Chem Inf Comput Sci. 2004; 44(3):1000-1005.

Gleeson MP. Generation of a set of simple, interpretable ADMET rules of thumb. J Med Chem. 2008; 51(4):817-834.

Hughes JD, Blagg J, Price DA, Bailey S, DeCrescenzo GA, Devraj RV, Ellsworth E, Fobian YM, Gibbs ME, Gilles RW, Greene N. Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorg Med Chem Lett. 2008; 18(17):4872-4875.

Aldossary SA. Review on pharmacology of cisplatin: clinical use, toxicity and mechanism of resistance of cisplatin. Biomed Pharmacol J. 2019; 12(1):7-15.

Barabas K, Milner R, Lurie D, Adin C. Cisplatin: a review of toxicities and therapeutic applications. Vet Comp Oncol. 2008; 6(1):1-18.

Brasseur K, Gévry N, Asselin E. Chemoresistance and targeted therapies in ovarian and endometrial cancers. Oncotarget. 2017; 8(3):4008-4042.

Yuan R, Hou Y, Sun W, Yu J, Liu X, Niu Y, Lu JJ, Chen X. Natural products to prevent drug resistance in cancer chemotherapy: a review. Ann N Y Acad Sci. 2017; 1401(1):19-27.

Gao P, Huang X, Liao T, Li G, Yu X, You Y, Huang Y. Daucosterol induces autophagic-dependent apoptosis in prostate cancer via JNK activation. Biosci Trends. 2019; 13(2):160-167.

Zeng J, Liu X, Li X, Zheng Y, Liu B, Xiao Y. Daucosterol inhibits the proliferation, migration, and invasion of hepatocellular carcinoma cells via Wnt/β-catenin signaling. Mol Basel Switz. 2017; 22(6):E862.

Zhao C, She T, Wang L, Su Y, Qu L, Gao Y, Xu S, Cai S, Shou C. Daucosterol inhibits cancer cell proliferation by inducing autophagy through reactive oxygen species-dependent manner. Life Sci. 2015; 137:37-43.

Han B, Jiang P, Liu W, Xu H, Li Y, Li Z, Ma H, Yu Y, Li X, Ye X. Role of daucosterol linoleate on breast cancer: studies on apoptosis and metastasis. J Agric Food Chem. 2018; 66(24):6031-6041.

Yue K, Ye M, Zhou Z, Sun W, Lin X. The genus cordyceps: a chemical and pharmacological review. J Pharm Pharmacol. 2013; 65(4):474-493.

Yoshikawa N, Nishiuchi A, Kubo E, Yamaguchi Y, Kunitomo M, Kagota S, Shinozuka K, Nakamura K. Cordyceps sinensis acts as an adenosine A3 receptor agonist on mouse melanoma and lung carcinoma cells, and human fibrosarcoma and colon carcinoma cells. Pharmacol Amp Pharm. 2011; 2(4):266-270.

Yu S, Yan H, Zhang L, Shan M, Chen P, Ding A, Li SF. A review on the phytochemistry, pharmacology, and pharmacokinetics of amentoflavone, a naturally-occurring biflavonoid. Mol Basel Switz. 2017; 22(2):E299.

Shishi P, Fengfeng X, Wenming C, Qi Z, Lili Z. Ginkgetin inhibits growth and invasion of endometrial carcinoma by disruption of janus kinase 1/signal transducers and activators of transcription 3 and phosphoinositide-3-kinase/protein kinase B pathways. Curr Top Nutraceut Res. 2021; 19(1):77-83.

Bae H, Song G, Lim W. Stigmasterol causes ovarian cancer cell apoptosis by inducing endoplasmic reticulum and mitochondrial dysfunction. Pharmaceut. 2020; 12(6):E488.

Zhao H, Zhang X, Wang M, Lin Y, Zhou S. Stigmasterol simultaneously induces apoptosis and protective autophagy by inhibiting akt/mTOR pathway in gastric cancer cells. Front Oncol. 2021; 11:629008.

Liao H, Zhu D, Bai M, Chen H, Yan S, Yu J, Zhu H, Zheng W, Fan G. Stigmasterol sensitizes endometrial cancer cells to chemotherapy by repressing Nrf2 signal pathway. Cancer Cell Int. 2020; 20:480.

Ambavade SD, Misar AV, Ambavade PD. Pharmacological, nutritional, and analytical aspects of β-sitosterol: a review. Orient Pharm Exp Med. 2014; 14(3):193-211.

Imani A, Maleki N, Bohlouli S, Kouhsoltani M, Sharifi S, MalekiDizaj S. Molecular mechanisms of anticancer effect of rutin. Phytother Res PTR. 2021; 35(5):2500-2513.

Abdullah FO, Hussain FH, Mannucci B, Lappano R, Tosi S, Maggiolini M, Vidari G. Composition, Antifungal and Antiproliferative Activities of the Hydrodistilled Oils from Leaves and Flower Heads of PterocephalusnestorianusNábělek. Chem Biodivers. 2017; 14(7): e1700009.

Saleem M, Afaq F, Adhami VM, Mukhtar H. Lupeol modulates NF-kappaB and PI3K/akt pathways and inhibits skin cancer in CD-1 mice. Oncogene. 2004; 23(30):5203-5214.

Saleem M. Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett. 2009; 285(2):109-115.

Bharath B, Perinbam K, Devanesan S, AlSalhi MS, Saravanan M. Evaluation of the anticancer potential of Hexadecanoic acid from brown algae Turbinariaornata on HT–29 colon cancer cells. J Mol Struct. 2021; 1235:130229.

Sharifi S, Mostafavi PG, Tarasi R, Moradi AM, Givianrad MH, Farimani MM, Ebrahimi SN, Hamburger M, Niknejad H. Purified compounds from marine organism sea pen induce apoptosis in human breast cancer cell MDA-MB-231 and cervical cancer cell Hela. Eur J Pharmacol. 2020; 877:173075.

Dong Y, Ji G, Cao A, Shi J, Shi H, Xie J, Wu D. Effects of sinensetin on proliferation and apoptosis of human gastric cancer AGS cells. J Chin Mater Medica. 2011; 36(6):790-794.

Androutsopoulos VP, Ruparelia K, Arroo RRJ, Tsatsakis AM, Spandidos DA. CYP1-mediated antiproliferative activity of dietary flavonoids in MDA-MB-468 breast cancer cells. Toxicol. 2009; 264(3):162-170.

Kim SM, Ha SE, Lee HJ, Rampogu S, Vetrivel P, Kim HH, Venkatarame Gowda Saralamma V, Lee KW, Kim GS. Sinensetin induces autophagic cell death through p53-related AMPK/mTOR signaling in hepatocellular carcinoma HepG2 cells. Nutrients. 2020; 12(8):E2462.

Han Jie L, Jantan I, Yusoff SD, Jalil J, Husain K. Sinensetin: An insight on its pharmacological activities, mechanisms of action and toxicity. Front Pharmacol. 2020; 11:553404.

Jacobson KA, Moro S, Manthey JA, West PL, Ji XD. Interactions of flavones and other phytochemicals with adenosine receptors. Adv Exp Med Biol. 2002; 505:163-171.

Chen YK, Wang HC, Ho CT, Chen HY, Li S, Chan HL, Chung TW, Tan KT, Li YR, Lin CC. 5-demethylnobiletin promotes the formation of polymerized tubulin, leads to G2/M phase arrest and induces autophagy via JNK activation in human lung cancer cells. J NutrBiochem. 2015; 26(5):484-504.

Bang DY, Kyung M, Kim MJ, Jung BY, Cho MC, Choi SM, Kim YW, Lim SK, Lim DS, Won AJ, Kwack SJ. Human risk assessment of endocrine-disrupting chemicals derived from plastic food containers. Compr Rev Food Sci Food Saf. 2012; 11(5):453-470.

Go RE and Choi KC. Transcriptions of cell cycle-related genes were altered by benzylbutyl phthalate and diisobutyl phthalate via an estrogen receptor αsignaling pathway in human ovarian cancer cells. EndocrAbstr. 2014; 35:P508.

Wan J, Gao Y, Zeng K, Yin Y, Zhao M, Wei J, Chen Q. The levels of the sex hormones are not different between type 1 and type 2 endometrial cancer. Sci Rep. 2016; 6:39744.

Borch J, Axelstad M, Vinggaard AM, Dalgaard M. Diisobutyl phthalate has comparable anti-androgenic effects to di-n-butyl phthalate in fetal rat testis. Toxicol Lett. 2006; 163(3):183-190.

Tangen IL, Onyango TB, Kopperud R, Berg A, Halle MK, Øyan AM, Werner HM, Trovik J, Kalland KH, Salvesen HB, Krakstad C. Androgen receptor as potential therapeutic target in metastatic endometrial cancer. Oncotarget. 2016; 7(31):49289-49298.

Im NK, Jang WJ, Jeong CH, Jeong GS. Delphinidin suppresses PMA-induced MMP-9 expression by blocking the NF-κB activation through MAPK signaling pathways in MCF-7 human breast carcinoma cells. J Med Food. 2014; 17(8):855-861.

Kim MH, Jeong YJ, Cho HJ, Hoe HS, Park KK, Park YY, Choi YH, Kim CH, Chang HW, Park YJ, Chung IK. Delphinidin inhibits angiogenesis through the suppression of HIF-1α and VEGF expression in A549 lung cancer cells. Oncol Rep. 2017; 37(2):777-784.