Effect of Pulutan (Urena lobata) Leaf Extract on Blood Glucose Level, Hemoglobin and Body Growth of Zebra Fish (Danio rerio) Exposed to Malathion doi.org/10.26538/tjnpr/v5i6.9
Main Article Content
Abstract
Pulutan (Urena lobata) is a medicinal plant having antioxidant activity. However, their potency to inhibit the adverse effects of malathion has not been evaluated. The study aims to examine Urena lobata (U. lobata) leaves extract on blood glucose level, hemoglobin, and body growth of Danio rerio (D. rerio) exposed to malathion. The study used juvenile and adult of D. rerio which were divided into five groups (n=5). The leaves of U. lobata were extracted by the decoction method. The D. rerio was administered with extract 125-500 mg/L for 40 days concomitantly with malathion 2.5-5 mg/L. Blood glucose level and hemoglobin were measured using a commercially available glucometer and Hb-meter, respectively. Meanwhile, the body weight and length was measured using a balance scale and a ruler, respectively. All data were expressed as the mean ± SD and analyzed with one-way ANOVA followed by LSD test. The administration of U. lobata extract increased the body weight by about 40-90% (p<0.05) on juveniles D. rerio, while no changes were observed in adult, whereas there was a 20% increase in body length for both juvenile and adult D. rerio. The blood glucose level was decreased by 40-60% (p<0.05) for juveniles given U. lobata, meanwhile in adult D. rerio, it was reduced by 50-60%. U. lobata reduced the decrease of hemoglobin levels by 10-40% in juvenile D. rerio and 10-30% in adult. U. lobata extract reduced the decrease in body growth and hemoglobin level, and prevented blood glucose level increase.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Darmono. Toksisitas pestisida. Yogyakarta: Penerbit Kanisius; 2010. 20 p.
Lodgett DJ. Organophosphate and carbamate insecticides. Small Animal Toxicology, 2nd ed. Peterson ME, Talcott PA. Eds. SaintLouis: Elsevier Saunders. 2006. 941-953 p.
Crisp TM, Clegg ED, Cooper RL, Wood WP, Anderson DG, Baetcke KP, Hoffmann JL, Morrow MS, Rodier DJ, Schaeffer JE, Touart LW, Zeeman MG, and Patel YM. Environmental endocrine disruption: an effects assessment and analysis. Environ Health Perspect. 1998; 106(1):11-56.
Panut D. Pestisida dan aplikasinya. Jakarta: Agromedia Pustaka; 2008. 244-245 p.
Chen C, Yongzhong Q, Qiong C, Chuanjiang T, Chuanyong L, Yun L. Evaluation of pesticide residues in fruits and vegetables from Xiamen, China. Food Cont. 2011; 22(7):1114-1120.
Buratti FM, D'Aniello A, Volpe MT, Meneguz A, Testai E. Malathion bioactivation in the human liver: The contribution of different cytochrome P450 isoforms. Drug Metab Disposit.2005; 33(3):295-302.
Babu SS, Madhuri DB, Ali SL. A Pharmacological review of Urena lobata plant. Asian J Pharm Clin Res. 2016; 9:20-22.
Purnomo Y, Soeatmadji DW, Sumitro SB, Widodo MA, Antihiperglycemic effect of Urena lobata leaf extract by inhibition of dipeptidyl peptidase IV (DPP-IV) on diabetic rats. Int J Pharmacogn Phytochem Res. 2015; 7(5):1073-79.
Emran TB and Rahman MA. Sedative, anxiolytic and analgetic effect of Urena sinuate leaf extract in animal models. Int Food Res J. 2014; 21(5):2069-2075.
Adewale AO, David AA, Abiodun OO. Studies on antimicrobial, antioxidant and phytochemical analysis of Urena lobate leaf extract. J Phys Nat Sci. 2007; 1:12-20.
Lissy KP, Simon TK, Lathab MS. Antioxidant potential of Sida retusa, Urena lobata, and Triumfetta rhomboidea. Sci Life.
; 25:10-15.
Wang S, Liu K, Wang X. Toxic effects of celastrol on embryonic development of zebra fish (Danio rerio). Drug Chem Toxicol. 2010; 34:61-65.
Huang Y, Jinsong Z, Xiaobo H, Tinglin H. The use of zebrafish (Danio rerio) behavioral responses in identifying subletal exposures to deltamethrin. Int J Environ Res Pub Health. 2014;11:3650-3660.
Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, MatthewsL, McLaren S, Sealy I, Caccamo M, Churcher C, Scott C, Barrett JC, Koch R, Rauch G, White S, Chow W, Kilian B, Quintais LT, Guerra-Assunça˜o JA, Zhou Y, Gu Y, Yen J, Vogel J, Eyre T, Redmond S, Banerjee R, Chi J, Fu B, Langley E, Maguire SF, Laird GK, Lloyd D, Kenyon E, Donaldson S, Sehra H, Almeida-King J, Loveland J, Trevanion S, Jones M, Quail M, Willey D, Hunt A, Burton J, Sims S, McLay K, Plumb B, Davis J, Clee C, Oliver K, Clark R, Riddle C, Elliot D, Threadgold G, Harden G, Ware D, Begum S, Mortimore B, Kerry G, Heath P, Phillimore B, Tracey A, Corby N, Dunn M, Johnson C, Wood J, Clark S, Pelan S, Griffiths G, Smith M, Glithero R, Howden P, Barker N, Lloyd C, Stevens C, Harley J, Holt K, Panagiotidis G, Lovell J, Beasley H, Henderson C, Gordon D, Auger K, Wright D, Collins J, Raisen C, Dyer L, Leung K, Robertson L, Ambridge K, Leongamornlert D, McGuire S, Gilderthorp R,
Griffiths C, Manthravadi D, Nichol S, Barker G, Whitehead S, Kay M, Brown J, Murnane C, Gray E, Humphries M, Sycamore
N, Barker D, Saunders D, Wallis J, Babbage A, Hammond S, Mashreghi-Mohammadi M, Barr L, Martin S, Wray P, Ellington
A, Matthews N, Ellwood M, Woodmansey R, Clark G, Cooper JD, Tromans A, Grafham D, Skuce C, Pandian R, Andrews R, Harrison E, Kimberley A, Garnett J, Fosker N, Hall R, Garner P, Kelly D, Bird C, Palmer S, Gehring I, Berger A, Dooley CM, Ersan-U Z, Eser C, Geiger H, Geisler M, Karotki L, Kirn A, Konantz J, Konantz M, Oberla¨nder M, Rudolph-Geiger S, Teucke M, Lanz C, Raddatz G, Osoegawa K, Zhu B, Rapp A, Widaa S, Langford C, Yang F, Schuster SC, Carter NP, Harrow J, Ning Z, Herrero J, Searle SMJ, Enright A, Geisler R, Plasterk RHA, Lee C, Westerfield M, de Jong PJ, Zon L.I, Postlethwait J.H, Nu¨sslein-Volhard C, Hubbard TJP, Crollius HR, Rogers J, Stemple DL. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013; 496(7446):498-503.
OECD. Fish Acute Toxicity Test. Paris. Available from: http://www.oecd.org/chemicalsafety/riskassessment/1948241.pdf. Accessed 10 July 2018.
OECD. Fish Embryo Toxicity Test. Available from: http://www.oecd.org/chemicalsafety/testing/36817070.pdf.
Accessed 10 July 2018.
Pournourmohammadi S, Ostad S, Azizi E, Ghahremani M, Farzami B, Minaie B, Larijani B, Abdollahi M. Induction of insulin resistance by malathion: Evidence for disrupted islets cells metabolism and mitochondrial dysfunction. Pesticide Biochem Physiol. 2007; 88(3):346-352.
Draznin B. Molecular Mechanisms of Insulin Resistance: Serine Phosphorylation of Insulin Receptor substrate-1 and Increased Expression of p85alpha: The Two Sides of a Coin. Diabetes. 2006; 55(8):2392-7.
Catena C, Giacchetti G, Novello M, Colussi G, Cavarape A, Sechi LA, Cellular mechanisms of insulin resistance in rats with
fructose-induced hypertension. Am J Hypertens. 2003;16(11):973–978.
Tchounwou PB, Patlolla AK, Yedjou CG, Moore PD. Environmental exposure and health effects associated with malathion toxicity. Licensee InTech. 2015; Chapter 3.
Rabinovitch A, Suarez-Pinzon WL, Strynadka K, Lakey JR, Rajotte RV. Human pancreatic islet beta-cell destruction by
cytokines involves oxygen free radicals and aldehyde production. The J Clin Endocrinol Metabol. 1996; 81(9):3197-202.
Pessler-Cohen D, Pekala PH, Kovsan J, Bloch-Damti A, Rudich A, Bashan N. GLUT4 repression in response to oxidative stress is associated with reciprocal alterations in C/EBP alpha and delta isoforms in 3T3-L1 adipocytes. Archiv Physiol iochem.
; 112(1):3-12.
Grygorczyk R. Orlov SN. Effects of hypoxia on erythrocyte membrane properties-implications for intravascular hemolysis
and purinergic control of blood flow. Front Physiol. 2017; 8:1110
Kuhn V, Diederich L, Keller TCS, Kramer CM, Luckstadt W, Panknin C, Suvorava T, Isakson BE, Kelm M, Cortese-Krott MM. Erythrocyte function and dysfunction: redox regulation, nitric oxide metabolism, anemia. Antioxid Redox Signal. 2017; 26(13):718-742.
Mnif W, Hassine AIH, Bouaziz A, Bartegi A, Thomas O, Roig B. Effect of endocrine disruptor pesticides: a review. Int J
Environ Res Pub Health. 2011; 8:2265-2303.
Lal B, Sarang MK, Kumar P. Malathion exposure induces the endocrine disruption and growth retardation in the catfish,
Clarias batrachus (Linn.). General and Comparative Endocrinol. 2013; 181:139-145.
Pérez-Sánchez J and Le Bail PY. Growth hormone axis as marker of nutritional status and growth performance in fish.
Aquacul. 1999; 177(1-4):117-128.
Cook LW, Paradise CJ, Lom B. The pesticide malathion reduces survival and growth in developing zebrafish. Environ oxicol
Chem. 2005; 24(7):1745-1750.
Singh AK and Lal B. Seasonal and circadian time-dependent dual action of GH onsomatic growth and ovarian evelopment
in the Asian catfish Clarias batrachus (Linn.): role of temperature. Gen Comp Endocrinol. 2008; 159:98-106.
Vera Cruz EM, Brown CL, Luckenbanch JA, Picha ME, Bolivar RB, Borski RJ. Insulin-like growth Factor-I cDNA cloning gene expression and potential use as a growth rate indicator in Nile tilapia Oreochromis niloticus. Aquacul. 2006; 251:585-595.
Purnomo Y, Soeatmadji DW, Sumitro SB, Widodo MA. Inhibitory activity of Urena lobata leaf extract on dipeptidyl peptidase-4 (DPP-4): is it different in vitro and in vivo? Med Plants. 2018; 10(2):99-105.
Joslin EP and Kahn CR. Joslin's diabetes mellitus. Philadelphia, Pa: Lippincott Williams & Willkins; 2005.
Sellamuthu PS, Arulselvan P, Kamalraj S, Fakurazi S, Kandasamy M. Protective nature of mangifera on oxidative stress and antioxidant status in tissues of streptozotocin-induced diabetic rats. ISRN Pharmacol. 2013; 2013:1-10.hen JH, Tsai CW, Wang CP, Lin HH. Anti-atherosclerotic
potential of gossypetin via inhibiting LDL oxidation and foam
cells formation. Toxicol Appl Pharmacol. 2013; 272:313-324.
Matkowski A, Kus P, Goralska E, Wozniak D. Mangiferin – a
bioactive xanthonoid, not only from mango and not just
antioxidant. Mini-Rev Org Chem. 2013; 13:439-455.
Panda S, Jafri M, Kar A, Meheta BK. Thyroid inhibitory, antiperoxidative and hypoglycemic effects of stigmasterol isolated
from Butea monosperma. Fitoter. 2009; 80:123-126.
Assmann G, Cullen P, Erbey J, Ramey DR, Kannenberg F,
Schulte H. Plasma sitosterol elevations are associated with an
increased incidence of coronary events in men: results of a
nested case-control analysis of the Prospective Cardiovascular
Münster (PROCAM) study. Nutr Metab Cardiovasc Dis. 2006;
(1):13-21.
Chahar MK, Sharma N, Dobhal MP, Joshi YC. Flavonoids: A
versatile source of anticancer drugs. Pharmacogn Rev. 2011;
(9):1-12.
Goodman LS, Harfman JG, Limbird LE, Gilman AG. Goodman
& Gilman's the pharmacological basis of therapeutics. New
York: McGraw-Hill; 2006.
Ruiz LM, Salazar C, Jensen E, Ruiz PA, Tiznado
W, Quintanilla RA, Barreto M, Elorza AA. Quercetin affects
erythropoiesis and heart mitochondrial function in mice. Oxid
Med Cellul Longev. 2015; 1-12.
Asgary S, Naderi GH, Askari N. Protective effect of flavonoids
against red blood cell hemolysis by free radicals. Exp Clin
Cardiol. 2005; 10(2):88-90.
Serafini M, Ilaria P, Raguzzini A. Session 1: Antioxidant and
the immune system flavonoids as anti-inflammatory agents.
Proc Nutr Soc. 2010; 69:273-278.
Ali SL, Babu, SS, Madhuri BD. A pharmacological review of
Urena lobata Plant. Asian J Pharm Clin Res. 2016; 9:20-22.