Blood Schizonticidal Activity of Phyllanthus amarus Enhances Testovarian Antioxidant Defense Capacity in Plasmodium berghei Infected Mice

doi.org/10.26538/tjnpr/v2i3.10

Authors

  • Olukemi A. Opajobi Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria.
  • Theresa Ezedom Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
  • Lilian E. Chris-Ozoko Department of Anatomy and Cell Biology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria.
  • Innocent Onyesom

Keywords:

Testes,, ovaries,, schizonticidal,, Phyllanthus amarus,, Plasmodium berghei

Abstract

In the present study, the crude ethanol leaf extract of Phyllanthus amarus was investigated for its in vivo activity against Plasmodium berghei malarial parasite in both early and established infections. The study also evaluated the changes in testicular and ovarian antioxidant defense capacity in P. berghei infected mice treated with the P. amarus leaf extract (100, 200 and 300mg/kg) using biomarkers (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH) and malondialdehyde (MDA)) and documental procedures. Results show increased (p < 0.05) ovarian levels of antioxidants (GSH, SOD, CAT and GPx) with insignificant change in MDA of P. berghei infected mice when compared with control suggesting good antioxidant capacity. Testes of the P. berghei infected mice, however, showed a significant decrease (p<0.05) in the levels of the antioxidant with an associated increase in MDA (p<0.05) amounts when compared with control values. These data indicate that the testes are more
susceptible to oxidative stress than the ovaries during malarial infection. Blood schizonticidal activity of P. amarus exhibits repository actions against P. berghei parasites in a dose-dependent manner as Groups 1, 2, 3 and 4 show established infection values of 0.0, 61.0 ± 8.0, 72.0 ± 6.0 and 87.0 ± 10, respectively. Also, P. amarus administration whether in the presence or absence of P. berghei infection significantly boosts antioxidant defense capacity and hence invigorated the testes and ovaries as indicated by the empirical data and histopathological evidence. The active phytochemicals, however, need to be identified for further study.

References

Butzloff S, Groves MR, Wrenger C, Muller BI. Cytometric quantification of singlet oxygen in the human malaria parasite Plasmodium falciparum. Cytometry Part A 2012; 81A:698-703.

Dwivedi S, Dwivedi A, Kaul S. Evaluation of antimalarial herbs drugs. Pharm Lic Network 2007. 1-2 p.

Farombi EO, Shyntum YY, Emerole GO. Influence of chloroquine treatment and Plasmodium falciparum malaria infection on some enzymatic and non-enzymatic antioxidant defense indices in humans. Drug Chem Toxicol. 2003; 26(1):59-71.

Tyagi A, Tyagi R, Vekariya R, Ahuja A. Study of antioxidant enzymes, MDA and lipid profile in cerebral malaria. Ind J Clin. Pract. 2013; 23(12):823-825.

Das BS, Patnaik JK, Mohanty S, Mishra SK, Mohanty D, Satpathy SK, Bose TK. Plasma antioxidants and lipid peroxidation products in falciparum malaria. Am J Trop Med Hyg. 1993; 49:720–725.

Akanbi OM, Omonkhua AA, Cyril-Olutayo CM, Fasimoye RY.The antiplasmodial activity of Anogeissus leiocarpus and its effect on oxidative stress and lipid profile in mice infected with Plasmodium berghei. Parasitol Res. 2012; 110:219–226.

Balla G, Jacob HS, Balla J, Rosenberg M, Nath K, Apple F, Eaton JW, Vercelloti GM. Ferritin: A cytoprotective antioxidant stratagem of endothelium. J Biol Chem. 1992; 267:18148–18153.

Percario S, Moreira DR, Gomes BAQ, Ferreira MES, Gonçalves ACM, Laurindo PSOC, Vihena TO, Dolabela MF, Green MD. Oxidative stress in malaria. Int J Mol Sci. 2012; 13:16346–72.

Kumar S, Bandyopadhyay U. Free heme toxicity and its detoxification systems in human. Toxicol Lett. 2005; 157:175–188.

Raghavendra K, Barik TK., Reddy BP., Sharma P, Dash AP. Malaria vector control: from past to future. Parasitol Res. 2011; 108:757-79.

Rajeshkumar NV, Joy KL, Kuttan G, Ramsewak RS, Nair MG,Kuttan R. Antitumour and anticarcinogenic activity of Phyllanthus amarus extract. J Ethnopharmacol. 2002; 81(1):17-22.

Joshi H, Parle M. Pharmacological evidence for antiamnesic potentials of Phyllanthus amarus in mice. Afri J Biomedical Res. 2007; 10:165.

Itoro E, Ukana D, Ekaete D. Phytochemical screening and nutrient analysis of Phyllanthus amarus. Asian J Plant Sci and Res. 2013; 3:116-122.

Oluwafemi F, Debiri F. Antimicrobial effect of Phyllanthus amarus and Parquetina nigrescens on Salmonella typhi. Afr J Biomed Res. 2008; 11(2):215-219.

Saranraj P, Sivasakthivelan P. Screening of antibacterial activity of the medicinal plant Phyllanthus amarus against urinary tract infection causing bacterial pathogens. Appl J Hyg.2012; 1(3):19-24.

Chandan S, Umesha S, Balamurugan V. Anti-leptospiral antioxidant and DNA damaging properties of Eclipta alba and Phyllanthus amarus. Sci Rep. 2012; 1(4):1-8.

Onyesom I, Onumaechi IF, Ehiwario J, Dagana R. Antiplasmodial activity of Phyllanthus amarus preserves renal function in Plasmodium berghei infected mice. EJMP 2015; 5(1):109-116.

Verma S, Sharma H, Garg M. Phyllanthus amarus: A Review. J Pharmacogn Phytochem. 2014; 3 (2):18-22.

Sen A, Batra A. The study of in vitro and in vivo antioxidant activity and total phenolic content of Phyllanthus amarus Schum Thonn: A medicinally important plant. Int J Pharm Pharm Sci. 2013; 5:947.

Nwaoguikpe RN, Ujowundu CO, Braide W, Obi J. Phyllantus amarus (Schum. and Thonn): An Antiplasmodial Plant. Br J Med Med Res. 2014; 4(35):5494-5508.

Patel JR, Tripathi P, Sharm V. Phyllantus amarus ethnomedicinal uses, phytochemistry and pharmacology, a review. J Ethnopharmacol. 2011; 138(2):286-313.

Cheesbrough M. District Laboratory Practice in Tropical Countries. Part 1. Cambridge University Press, London. 1998.239-258 p.

Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Ana Biochem.1979; 95:351-358.

Moron MA, DePierre JW, Mannevick B. Levels of glutathione, glutathione reductase and glutathione-S-transferase activities in rat liver. Biochem Biophys Acta 1979; 582:67-68.

Jakoby WB. Enzymatic Basis of Detoxication. 1st Edn., Academic Press, New York, 1980. 415 p.

McCord, JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969; 244:6049-6055.

Goldblith SA, Proctor BE. Photometric determination of catalyst activity. J Biol Chem. 1950; 187:705-709.

Dapper DV, Aziagba BN, Ebong OO. Antiplasmodial effects of the aqueous extract of Phyllantus amarus Schumach and Thonn

against Plasmodium berghei in swiss albino mice. Niger J Physiol Sci. 2007; 22(1-2):19-25.

Olorunniyi, OF, Morenikeji OA. In vivo antimalarial activity of crude aqueous leaf extract of Pyrenacantha staudtii against

Plasmodium berghei (NK65) in infected mice. Afr J Pharm Pharmacol. 2014; 8(12):342-345.

Okokon JE, Nwidu LL, Essiet GA. Evaluation of in vivo antiplasmodial activity of Aspilia africana. Inter J Pharmacol.2006; 2(3):348-351.

Susantiningsih T, Rahmawati R, Prijanti AR, Sadikin M,Freisleben H. Schizonticidal effect of a combination of Amaranthus spinosus L. and Andrographis paniculata Burm. F./Nees extracts in Plasmodium berghei-infected mice. Med J Indones. 2012; 21:66-70

Abdulelah H, Al-Adhroey ZMN, Hesham MA, Adel AA, Rohela M. Antimalarial activity of methanolic leaf extract of Piper betle L. Molecules 2011; 16:107-118.

Okokon JE, Jackson O, Opara KN, Etim E. In vivo antimalarial activity of ethanolic leaf extract of Acacia auriculiformis. Int J Drug Dev Res. 2010; 2(3):482-487.

Kumar HKB, Kuttan R. Protective effect of an extract of Phyllanthus amarus against radiation-induced damage in mice. J Rad Res. 2014; 45:133-139.

Arun K, Balasubramanian U. Comapartive study on hepatoprotective activity of Phyllanthus amarus and Eclipta prostrata against alcohol induced in albino rats. Int J Environ Sci. 2011; 2(1):373-391.

Syed AB, Iqbal MM, Kiranmai M, Ibrahim M. Hepatoprotective activity of Phyllanthus amarus seeds extracts in CCl4 Treated Rats: In vitro and in vivo. Global J Med Res. 2012; 12(6):38-49.

Padmaja SN, Shashikant VN, Ajit VS, Chitra CK. Role of Phyllanthus amarus treatment in hepatitis-C. Biomed Res.

; 22(3):319-322.

Nnodim JK, Nwanjo HU. Glycohaemoglobin concentration and hepatocellular enzymes activities in malaria patients in Owerri, Nigeria. Al Ameen J Med Sci. 2012; 5(2):25-27.

Nnodim JK, Nwanjo HU, Okolie NJ, Opara AU, Nwosu DC, OKoroiwu I, Dike J, Okorie H, Nwadike CN, Uduji HI.

Erythrocytic Antioxidant Enzymes, Antioxidant Vitamins And Plasma Malondiadehyde In Malaria Infected Patients In

Owerri. Aus J Basic Appl Sci. 2012; 6(8):365-368.

Pabón A, Carmona J, Burgos LC, Blair S. Oxidative stress in

patients with non-complicated malaria. Clin Biochem. 2003;

:71–78.

Veena CK, Josephine A, Preetha SP, Varalakshmi P. Effect of

sulphated polysaccharides on erythrocyte changes due to

oxidative and nitrosative stress in experimental hyperoxaluria.

Hum Exp Toxicol. 2007; 26:923–932.

Polya GM, Wang BH, Foo LY. Inhibition of signal regulated

protein kinases by plant derived hydrolysable tannins.

Phytochem. 1995; 38:307-314.

Foo LY. Amarinic acid and related ellagitannins from

Phyllanthus amarus. Phytochem. 1995; 39:217 - 224.

Downloads

Published

2018-03-01

How to Cite

A. Opajobi, O., Ezedom, T., E. Chris-Ozoko, L., & Onyesom, I. (2018). Blood Schizonticidal Activity of Phyllanthus amarus Enhances Testovarian Antioxidant Defense Capacity in Plasmodium berghei Infected Mice: doi.org/10.26538/tjnpr/v2i3.10 . Tropical Journal of Natural Product Research (TJNPR), 2(3), 150–157. Retrieved from https://tjnpr.org/index.php/home/article/view/536