Green synthesis of Characterized Bio-functionalized ZnO Nanoparticles from Terminalia catappa (Almond) Methanol Leaf Extract and their Potential Antioxidant and Antibacterial Properties

Main Article Content

Johnson O. Momoh
Sanjeev Kumar
Oluremi N. Olaleye
Oluwasegun M. Adekunle
Taiwo S. Aiyelero

Abstract

Synthesis of zinc oxide nanoparticles (ZnO-NPs) using plants has been suggested to have biological applications. ZnO-NPs were synthesized using Terminalia catappa (Almond) methanol leaf extract and Zn(CH3COO)2.6H2O as precursors. UV-visible spectroscopy (UV-vis), X-ray diffraction (XRD), scanning electron microscopy–energy-dispersive X-ray spectroscopy (SEM-EDX), and Fourier transform infrared (FTIR) were used to characterize the ZnO-nanoparticles. The antioxidant, GC-MS, and antibacterial activities were determined using standard methods. The phytochemical screening of the extract shows that it contains alkaloids, flavonoids, tannins, saponins, etc. The GC-MS analysis of the Almond extract indicated the presence of 12 different compounds, with the 9, 17-Octadecadienal-Z being the most abundant. The UV–vis analysis has absorption peaks at 370 nm; SEM shows a quasi-spherical-like shape, while EDX indicates that the ZnO-NPs contain oxygen (54.93%) and zinc (36.14%). The optical energy band gap of 3.353 eV was obtained. The average crystallite size of the ZnO-NPs was 53.46 nm with a dislocation density of 0.000349899 (nm)-2. FTIR spectrum revealed the presence of organic moieties serving as reducing and capping agents. The extract and the ZnO-NPs have antioxidant scavenging activity. The extract and tetracycline exhibited a moderate and strong antibacterial response against Klebsiella pneumonia, Salmonella typhi, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus, while the nanoparticles exhibited a weak and moderate response. The MIC and MBC values of the extract against the bacteria strains ranged from 12.50 to 25, and 25 to 50 mg/mL, respectively. The study supports the plant's traditional uses for treating infections and other diseases.
 

Downloads

Download data is not yet available.

Article Details

How to Cite
Momoh, J. O., Kumar, S., Olaleye, O. N., Adekunle, O. M., & Aiyelero, T. S. (2024). Green synthesis of Characterized Bio-functionalized ZnO Nanoparticles from Terminalia catappa (Almond) Methanol Leaf Extract and their Potential Antioxidant and Antibacterial Properties. Tropical Journal of Natural Product Research (TJNPR), 8(11), 9296-9309. https://doi.org/10.26538/tjnpr/v8i11.45
Section
Articles

How to Cite

Momoh, J. O., Kumar, S., Olaleye, O. N., Adekunle, O. M., & Aiyelero, T. S. (2024). Green synthesis of Characterized Bio-functionalized ZnO Nanoparticles from Terminalia catappa (Almond) Methanol Leaf Extract and their Potential Antioxidant and Antibacterial Properties. Tropical Journal of Natural Product Research (TJNPR), 8(11), 9296-9309. https://doi.org/10.26538/tjnpr/v8i11.45

References

1. Mahendra C, Murali M, Manasa G, Ponnamma P, Abhilash MR, Lakshmeesha TR, Satish A, Amruthesh KN, Sudarshana MS. Antibacterial and antimitotic potential of bio-fabricated zinc oxide nanoparticles of Cochlospermum religiosum (L.). Microb. Pathog. 2017;110: 620–629.

2. Singh AK, Pal P, Gupta V, Yadav TP, Gupta V, Singh SP. Green synthesis, characterization and antimicrobial activity of zinc oxide quantum dots using Eclipta alba. Mater. Chem. Phys. 2018;203: 40–48.

3. Luque-Morales PA, López-Peraza A, Nava-Olivas OJ, Amaya-Parra G, Báez-López YA, Orozco-Carmona VM, Garrafa-Gálvez HE, Chinchillas-Chinchillas MDJ. ZnO Semiconductor Nanoparticles and Their Application in Photocatalytic Degradation of Various Organic Dyes. Materials. 2021; 14:7537. doi.org/10.3390/ma14247537

4. Al-Zahrani SA, Patil MB, Mathad SN, Patil AY, Otaibi AA, Masood N, Mansour D, Khan A, Manikandan A, Syafri E.Photocatalytic Degradation of Textile Orange 16 Reactive Dye by ZnO Nanoparticles Synthesized via Green Route Using Punica Granatum Leaf Extract. Crystals. 2023; 13: 172. doi.org/10.3390/ cryst13020172

5. Xu L, Xian F, Zhang Y, Wang W, Qiu K, Xu J. Synthesis of ZnO-decorated SnO2 nanopowder with enhanced photocatalytic performance. Optik. 2019; 194:162965. doi.org/10.1016/j.ijleo.2019.162965

6. Ali TT, Narasimharao K, Parkin IP, Carmalt CJ, Sathasivam S, Basahel SN, Bawaked SM, Al-Thabaiti SA. Effect of pretreatment temperature on the photocatalytic activity of microwave irradiated porous nanocrystalline ZnO. New J. Chem. 2015;39: 321–332.

7. Gaur J, Vikrant K, Kim KH, Kumar S, Pal M, Badru R, Masand S, Momoh J. Photocatalytic degradation of Congo red dye using zinc oxide nanoparticles prepared using Carica papaya leaf extract. Mater. Today Sustain. 2023;22: 100339 doi.org/10.1016/j.mtsust.2023.100339

8. Gaur J, Kumar S, Pal M, Kaur H, Supreet, Badru R, Momoh J, Pal R, Kumar S. Bio-engineered, phyto-decorated, multi-form P. betel/ZnO as a potential photocatalytic agent, Adv. Nat. Sci. Nanosci. Nanotechnol. 2023;14: 035014 doi.org/10.1088/2043-6262/acf28a

9. Gaur J, Kumar S, Pal M, Kaur H, Batoo KM, Momoh JO, Supreet. Current trends: Zinc oxide nanoparticles preparation via chemical and green methods for the photocatalytic degradation of various organic dyes. Hybrid Adv. 2024; 5: 100128. doi.org/10.1016/j.hybadv.2023.100128

10. Gaur J, Kumar S, Kaur H, Pal M, Supreet4, Bala K, Batoo KM, Momoh JO, Hussain S. Eco-friendly innovation: harnessing nature’s blueprint for enhanced photocatalysis and antimicrobial potential in multi-structured PN/ZnO nanoparticles. Funct. Compos. Struct. 2024; 6: 015005 doi.org/10.1088/2631-6331/ad2c10

11. Thaya R, Malaikozhundan B, Vijayakumar S, Sivakamavalli J, Jeyasekar R, Shanthi S, Vaseeharan B, Palaniappan R. Chitosan coated Ag/ZnO nanocomposite and their antibiofilm, antifungal and cytotoxic effects on murine macrophages. Microb. Pathog. 2016;100: 124–132.

12. Rajakumar G, Thiruvengadam M, Mydhili G, Gomathi T, Chung III-M. Green approach for the synthesis of zinc oxide nanoparticles from Andrographis paniculata leaf extract and evaluation of their antioxidant, anti-diabetic, and anti-inflammatory activities. Bioprocess Biosyst Eng. 2018; 41:21–30. doi.org/10.1007/s00449-017-1840-9

13. Park C, Lee J, So HM, Chang WS. An ultrafast response grating structural ZnO photodetector with back-to-back Schottky barriers produced by hydrothermal growth. J. Mater. Chem. C. 2015;3: 2737–2743.

14. Ohashi H, Hagiwara M, Fujihara S. Solvent-assisted microstructural evolution and enhanced performance of porous ZnO films for plastic dye-sensitized solar cells. J. Power Sources. 2017;342:148–156.

15. Vijayakumar S, Vaseeharan B, Malaikozhundan B, Shobiya M. Laurus nobilis leaf extract mediated green synthesis of ZnO nanoparticles: characterization and biomedical applications. Biomed. Pharmacother. 2016; 84:1213–1222.

16. Umar H. Morphological Changes Caused by Synthesized Zinc Oxide Nanoparticles in MDA-MB 231 Cells and Prediction with Multi-Linear Regression. Trop J Nat Prod Res. 2023; 7(12): 5616-5622. http://www.doi.org/10.26538/tjnpr/v7i12.36.

17. Vakulov ZE, Zamburg EG, Khakhulin DA, Ageev OA. Thermal stability of ZnO thin films fabricated by pulsed laser deposition, Mater. Sci. Semicond. Process. 2017;66:21–25.

18. Gaur J, Kumar S, Zineddine M, Kaur H, Pal M, Bala K, Kumar V, Lotey GS, Musa M, Outassi OE. CTAB-crafted ZnO nanostructures for environmental remediation and pathogen control. Sci Rep. 2024; 14: doi.org/10.1038/s41598-024-65783-x

19. Rashad MM, Ismail AA, Osama I, Ibrahim IA, Kandil AHT. Photocatalytic decomposition of dyes using ZnO doped SnO2 nanoparticles prepared by solvothermal method. Arab, J. Chem. 2014; 7 (1): 71–77.

20. Khan MF, Ansari AH, Hameedullah M, Ahmad E, Husain FM, Zia Q, Baig U, Zaheer MR, Alam MM, Khan AM, AlOthman ZA, Ahmad I, Ashraf GM, Aliev G. Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: Potential role as nano-antibiotics. Sci Rep. 2016;6: doi: 10.1038/srep27689

21. Gan PP, Huang NY, Li SF. Green synthesis of gold nanoparticles using palm oil mill effluent (POME): a low-cost and eco-friendly viable approach. Bioresour. Technol. 2012;113: 132–135.

22. Benelli G, Lukehart CM. Special issue: applications of green-synthesized nanoparticles in pharmacology, parasitology, and entomology. J. Clust. Sci. 2017;28: 1–2.

23. Banumathi B, Vaseeharan B, Chinnasamy T, Vijayakumar S, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G. Euphorbia rothiana-fabricated Ag- nanoparticles showed high toxicity on Aedes aegypti larvae and growth inhibition on microbial pathogens: a focus on morphological changes in mosquitoes and antibiofilm potential against bacteria. J. Clust. Sci. 2017;28: 2857–2872.

24. Banumathi B, Vaseeharan B, Rajasekar P, Prabhu NM, Ramasamy P, Murugan K, Canale A, Benelli G. Exploitation of chemical, herbal and nano formulated acaricides to control the cattle tick, Rhipicephalus (Boophilus) microplus – a review. Vet. Parasitol. 2017;244: 102–110.

25. Halilu EM, Ngweh VA, Airemwen CO. Green Synthesis of Silver Nanoparticles from Parinari curatellifolia Methanol Stem Bark Extract and Evaluation of Antioxidant and Antimicrobial Activities. Trop J Nat Prod Res. 2023; 7(3):2498-2505. http://www.doi.org/10.26538/tjnpr/v7i3.5.

26. Fagbemi KO, Thonda OA, Daramola OO, Oyewole TE, Adeduro OO, Amodu S, Popola D, Aina DA. Antibacterial Activity of Silver Nanoparticles Synthesized Using Vitex grandifolia Against Multidrug-Resistant (MDR) Pathogens. Trop J Nat Prod Res. 2024; 8(8):8068-8074. https://doi.org/10.26538/tjnpr/v8i8.21.

27. Gholami-Shabani M, Shams-Ghahfarokhi M, Gholami-Shabani Z, Akbarzadeh A, Riazi G, Ajdari S, Amani A, Razzaghi-Abyaneh M. Enzymatic synthesis of gold nanoparticles using sulfite reductase purified from Escherichia coli: a green eco-friendly approach. Process Biochem. 2015;50: 1076–1085.

28. Saravanana M, Gopinathc V, Chaurasiab MK, Syedd A, Ameend F, Purushothamane N. Green synthesis of anisotropic zinc oxide nanoparticles with antibacterial and cytofriendly properties. Microb. Pathog. 2018;115: 57–63.

29. Imadea EE, Ajiboye TO, Fadiji AE, Onwudiwe DC, Babalola OO. Green synthesis of zinc oxide nanoparticles using plantain peel extracts and the evaluation of their antibacterial activity. Sci. Afr. 2022;16: doi: 10.1016/j.sciaf.2022.e01152

30. Abdurasid AA, Momoh JO, Aderele OR. Experimental and Mathematical Model for the Study of the In-vitro Susceptibility of Antimicrobial Agents against Escherichia coli Isolates Obtained from Abattoir Centres in Ikorodu, Lagos, Nigeria. Curr. J. Appl. Sci. Technol. 2018; 28(2):1-15.

31. Aderele OR, Kareem RA, Momoh JO. Phytochemical Screening, Mathematical Analysis and Antimicrobial Activity of Methanolic Seed Extract of Hunteria Umbellata. Euro. J. Med. Plants. 2020; 31(16): 1-17.

32. Momoh JO, Manuwa AA, Bankole YO. Phytochemical Screening, Atomic Absorption Spectroscopy, GC-MS, and Antibacterial Activities of Turmeric (Curcuma longa L.) Rhizome Extracts. J. Adv. Microbiol. 2022; 22(9): 116-131.

33. Momoh JO, Manuwa AA, Ayinde FA, Bankole YO. Nutritional, Phytochemicals, GC-MS and Antibacterial Activities of Aqueous Red Onion (Allium cepa) Extract against Staphylococcus aureus and Escherichia coli. Int.J.Trop. Dis. Healh. 2023; 44 (5): 35-51.

34. Momoh JO, Damazio OA, Oyegbami OM. GC–MS Analysis and Antimalarial Activity of Methanolic Leaf Extract of Carica papaya against Plasmodium berghei NK65 Infection in Swiss Mice. Annu.Res. Rev.Biol. 2020; 35(12):183-197.

35. Momoh JO, Damazio OA, Ajetunmobi OA, Babalola AO, Adekunle MO, Busari NO, Musa AA. Phytochemical Analysis and Antiplasmodial (curative) Activities of Methanolic Leaf Extract of Morinda lucida (Ewe Oruwo) in Male Swiss Mice Infected with Plasmodium berghei NK65. Int.J.Trop. Dis. Healh. 2019; 37(1):1-13.

36. Salim HM, KurniaL F, Bintarti TW, Handayani H, Shimabukuro M. Hepatoprotective Effects of Methanol Extract of Syzygium polyanthum L. Leaves (Salam) on High Fat Diet. Trop J Nat Prod Res.2021; 5(12):2092-2095. doi.org/10.26538/tjnpr/v5i12.8.

37. Momoh JO, Adeniyi MO, Aderele OR. Experimental and Mathematical Model for the Hepatoprotective Effect of Methanolic Extract of Moringa oleifera Leaf against CCl4- induced Hepatotoxicity in Sprague Dawley Male Albino Rats. J.Adv.Med. Med. Res. 2018; 26(5):1-14.

38. Momoh JO, Aderele OR, Kareem RA. Sub-acute and protective effect of Cymbopogon citratus against carbon tetrachloride-induced liver damage. Afr. J. Biochem. Res. 2020; 14(4):112-124.

39. Lawal M, Suleiman A, Matazu NU, Dawud FA, Mohammed A, UmarI A. Antidiabetic Activity of Pistia strateotes L. Aqueous Extractin Alloxan-induced Diabetic Rats. Trop J Nat Prod Res. 2019;3(3):91-94. doi.org/10.26538/tjnpr/v3i3.5.

40. Longe AO, Momoh JO, Asoro RI. Acute toxicity and hypoglycemic properties of ethanolic root extract of Vernonia amygdalina (bitter leaf) in alloxan-induced diabetic rats. Int.J.Curr.Res. 2017; 9(5):50132-50138.

41. Momoh JO, Manuwa AA, Oshin TT. Phytochemical screening, Gas chromatography: Mass spectrometry and antidiabetic properties of aqueous extract of ginger (Zingiber officinale) in Alloxan induced diabetic Wistar rats. J. pharmacogn. phytochem. 2022; 11(5):11-19.

42. Momoh JO, Ayinde FA, Awote OK, Adekunle OM, Obayomi AA. Antioxidant, inhibition of advanced glycation end-product formation and antimicrobial activities of Ocimum gratissimum (scent leaf) methanolic leaf extract against Escherichia coli and Bacillus SPP. J.Chem.Soc. Niger. 2023; 48(5): 800 – 819.

43. Bikanga R, Akué R, Nkounkou LC, Lebibi J, Louis-Clément OE, Ouamba JM. Phytochemical study and antioxidant activities of Terminalia catappa L. and Mitragyna ciliate Aubrev and Pellegr medicinal plants of Gabon. J Med Plants Stud. 2019; 7(1): 33-38.

44. Muthulakshmi G, Neelanarayanan P. Evaluation of Antimicrobial Activities of Terminalia catappa Leaves’ Extracts against Bacterial and Fungal Pathogens. Indian J. Nat. Sci. 2021; 11 (64).

45. Sowmya TN, Raveesha KA. Polyphenol-Rich Purified Bioactive Fraction Isolated from Terminalia catappa L.: UHPLC-MS/MS-Based Metabolite Identification and Evaluation of Their Antimicrobial Potential. Coatings. 2021;11: 1210. doi.org/10.3390/coatings11101210

46. Adeniyi MO, Momoh JO, Aderele OR. Experimental and Mathematical Model for the Antimalarial Activity of Metabolic Root Extract of Azadirachtaindica (Dongoyaro) in Mice Infected with Plasmodium berghei NK65, J. Adv. Math. Comput. Sci. 2020; 35(5): 68-82.

47. Theng KB, Korpenwar AN. Phytochemical Analysis of Ethanol Extract of Ampelocissus Latifolia (Roxb.) Planch Tuberous Root Using UV-Vis, FTIR, and GC-MS. Int J Pharm Sci Res. 2015; 6(9):3936-3942.

48. Siripi BR, Badal KM. Facile green synthesis of zinc oxide nanoparticles by Eucalyptus globulus and their photocatalytic and antioxidant activity. Adv.Powder Technol. 2017; 28. doi: 10.1016/j.apt.2016.11.026

49. Allyn OQ, Kusumawati E, Nugroho RA. Antimicrobial activity of Terminalia catappa brown leaf extracts against Staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa ATCC 27853. F1000Res. 2018;7:doi: 10.12688/f1000research.15998.1

50. Mbengui RD, Guessennd NK, Gervais MM, Julien KG, Constantin OO, Jean DN, Mireille D, Joseph AD. Phytochemical screening and study of comparative antibacterial activity of aqueous and alcoholic extracts of the leaves and barks of Terminalia catappa on multiresistant strains. J. Appl. Biosci. 2013; 66: 5040–5048.

51. Katiki LM, Gomes ACP, Barbieri AME, Pacheco PA, Rodrigues L, Veríssimo CJ, Gutmanis G, Piza AM, Louvandini H, Ferreira JFS. Terminalia catappa: Chemical composition, in vitro and in vivo effects on Haemonchus contortus. Vet Parasitol. 2017; 246: 118–123.

52. Okeke MI, Iroegbu CU, Eze EN, Okoli AS, Esimone CO. Evaluation of extracts the roots of Landolphia owerrience for antibacterial activity. J Ethanopharmacol. 2001;78: 119-127.

53. Momoh J, Olaleye ON, Odetunde SK. Antimicrobial and Antioxidant Properties of Aqueous Garlic (Allium sativum) Extract Against Staphylococcus aureus and Pseudomonas aeruginosa, Microbiol. Res. J. Int. 2016; 14(1): 1-11.

54. Gill AO, Holley RA. Disruption of Escherichia coli, Listeria monocytogenes, and Lactobacillus sakei cellular membranes by plant oil aromatics. Int.J.Food Microbiol. 2006;108: 1–9.

55. Mabasa XE, Mathomu LM, Madala NE, Musie EM, Sigidi MT. Molecular Spectroscopic (FTIR and UV-Vis) and Hyphenated Chromatographic (UHPLC-qTOF-MS) Analysis and In Vitro Bioactivities of the Momordica balsamina Leaf Extract. Biochem Res Int. 2021. doi: 10.1155/2021/2854217

56. Johnson M, Syed-Ali FM. Spectroscopic studies on Pouzolzia wightii benn. Int J Pharm Pharm Sci. 2018; 10 (3):124–132.

57. Krishnamoorthy K, Subramaniam P. Phytochemical Profiling of Leaf, Stem, and Tuber Parts of Solena amplexicaulis (Lam.) Gandhi Using GC-MS. Int. Sch. res. notices. 2014; doi.org/10.1155/2014/567409

58. Momoh JO, Olaleye ON. Evaluation of Secondary Metabolites Profiling of Ginger (Zingiber officinale Roscoe) Rhizome using GC-MS and Its Antibacterial Potential on Staphylococcus aureus and Escherichia coli. Microbiol. Res. J. Int. 2022; 32(7): 7-31.

59. Ahmad W, Kalra D. Green synthesis, characterization and antimicrobial activities of ZnO nanoparticles using Euphorbia hirta leaf extract. J. King Saud Univ. Sci. 2020;32: 2358-2364.

60. Suresh D, Nethravathi PC, Udayabhanu, Rajanaika H, Nagabhushana H, Sharma SC. Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Mater. Sci. Semicond. Process. 2015;31: 446-454.

61. Suresh D, Shobharani RM, Nethravathi PC, Pavan-Kumar MA, Nagabhushana H, Sharma SC. Artocarpus gomezianus aided green synthesis of ZnO nanoparticles: luminescence, photocatalytic and antioxidant properties. Spectrochim Acta Mol Biomol. Spectrosc. 2015;141: 128-134. doi: 10.1016/j.saa.2015.01.048

62. Pudukudy M, Yaakob Z. Facile synthesis of quasi-spherical ZnO nanoparticles with excellent photocatalytic activity. J. Cluster Sci. 2015; 26:1187-1201.

63. Sun JH, Dong SY, Feng JL, Yin XJ, Zhao XC. Enhanced Sunlight Photocatalytic Performance of Sn-Doped ZnO for Methylene Blue Degradation. J Mol Catal A Chem. 2011;335: 145-150. doi.org/10.1016/j.molcata.2010.11.026

64. Reddy AJ, Kokila MK, Nagabhushana H, Rao JL, Shivakumara C, Nagabhushana BM, Chakradhar RPS. Combustion synthesis, characterization, and Raman studies of ZnO nanopowders, Spectrochim. Acta Mol. Biomol. Spectrosc. 2011;81: 53-58.

65. Alharthi FA, Alghamdi AA, Alothman AA, Almarhoon ZM, Alsulaiman MF, Al-Zaqri N. Green synthesis of ZnO nanostructures using Salvadora persica leaf extract: applications for photocatalytic degradation of methylene blue dye. Crystals. 2020;10(6): doi.org/10.3390/cryst10060441

66. Rani KS, Mumtaz M, Priyank R, Chandran M. Phytochemical screening by FTIR spectroscopic analysis of methanol leaf extract of herb Andrographis echioides. J Ayu Herb Med. 2021; 7(4): 257-261.

67. Wetzel DL, Eilert AJ, Pietrzak LN, Miller SS, Sweat JA. Ultraspatially-resolved synchrotron infrared microspectroscopy of plant tissue in situ. Cell. Mol. Biol. 1998; 44 (1): 145-168.

68. Rad SS, Sani AM, Mohseni S. Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Mentha pulegium (L.). Microb. Pathog. 2019;131: 239– 245.

69. Zare M, Namratha K, Thakur MS, Byrappa K. Biocompatibility assessment and photocatalytic activity of bio-hydrothermal synthesis of ZnO nanoparticles by Thymus vulgaris leaf extract. Mater. Res. Bull. 2019; 109: 49–59.

70. Gupta R, Das N, Singh M. Fabrication and surface characterisation of c-ZnO loaded TTDMM dendrimer nanocomposites for biological applications. Appl. Surf. Sci. 2019;484:781–796.

71. Nagajyothi P, Sreekanth T, Tettey CO, Jun YI, Mook SH. Characterization, antibacterial, antioxidant, and cytotoxic activities of ZnO nanoparticles using Coptidis Rhizoma. Bioorg. Med. Chem. Lett. 2014; 24:4298–4303.

72. Sowndhararajan K, Joseph JM, Manian S. Antioxidant and free radical scavenging activities of Indian Acacias: Acacia leucophloea (Roxb.) Willd., Acacia ferruginea DC., Acacia dealbata Link. and Acacia pennata (L.) Willd. Int. J. Food Prop. 2013;16:1717–1729.

73. Awe FW, Faruruwa MD, Abba H. Green Synthesis, Characterization and Antibacterial Activity of Zinc Oxide and Titanium Dioxide Nanoparticles Using Terminalia Catappa and Cymbopogon Citratus Leaf Extract. Phys. Commun. 2021; 7(4): 563-572.

74. Muthuvel A, Jothibas M, Manoharan C. Effect of chemically synthesis compared to biosynthesized ZnO-NPs using Solanum nigrum leaf extract and their photocatalytic, antibacterial and in-vitro antioxidant activity. J. Environ. Chem. Eng. 2020;8: doi.org/10.1016/j.jece.2020.103705.

75. Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fievet F. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 2006;6: 866–870.

76. Hameed ASH, Karthikeyan C, Kumar VS, Kumaresan S, Sasikumar S. Effect of Mg2+, Ca2+, Sr2+ and Ba2+ metal ions on the antifungal activity of ZnO nanoparticles tested against Candida albicans. Mater. Sci. Eng. C. 2015;52: 171–177.

77. Rahman A, Afzal R, Zulfiqar S, Alsafari IA, Khan MA, Agboola PO, Haider S, Warsi MF, Shakir I. Superior photodegradation and antibacterial activity of r-GO supported ternary nanocomposite of doped transition metal compounds. Ceram. Int. 2021;47:14569–14578.