Susceptibility Studies of Vancomycin Resistant Staphylococcus aureus (VRSA), Extended β-lactamase Producing Escherichia coli and P. falciparum to Ethylacetate Extract of Endophytic Fungal Metabolites from Annona senegalensis doi.org/10.26538/tjnpr/v5i7.20
Main Article Content
Abstract
control of existing and emerging antimicrobial drug-resistance (ADR). This study, aimed at assessing the susceptibility of vancomycin resistant Staphylococcus aureus (VRSA), extended β- lactamase (ESβL) producing Escherichia coli (E. coli) and Plasmodium falciparum (P. falciparum) to ethyl acetate extract of secondary metabolites of endophytic fungi isolated from the leaves and root of Annona senegalensis Pers. Seven endophytic fungi were isolated from cultured, freshly collected root and leaves of A. senegalensis. Six (Root(RT)1, Root (RT)2, Root(RT)3, Leaf-Blade(LB)1, Mid-Rib(MR)1 and Mid-Rib(MR)2) out of the seven isolates whose toxicity profiles had been ascertained in our previous study were selected for antibacterial and antimalarial studies. The antibacterial activities of the endophytic fungal extracts were tested using the agar well diffusion technique. The activities were tested against VRSA and ESβL E. coli and ciprofloxacin- (5 µg) was used as the positive controls. In vitro anti-malarial activity was also carried out with the extracts. The result showed that out of the six isolates, RT1 metabolite had marked activities against ESβL E. coli and P. falciparum. Similarly, RT2, had an impressive activity against VRSA, ESβL E. coli and P. falciparum. The highest concentration of RT2 gave 58 % inhibition of the parasite whereas that of the control was 66 %. This impressive susceptibility of VRSA, ESβL E. coli and P. falciparum to these fungal metabolites calls for further studies on these metabolites to purify and elucidate the bioactive component of each compound.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Anguang C, Sijin Y, Xiancai R. Vancomycin resistant Staphylococcus aureus infections: A review of case updating and clinical features. J Adv Res. 2020; 21:169-176.
Wibke W, Yvonne P, Solvy W, Andrea H, Rasmus L, Axel K, Petra G, Florian S. Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli Isolated from Flies in the Urban Center of Berlin, Germany. Int J Environ Res Pub Health. 2019; 16(1530):1-9.
Roger FG, Greenwood D, Norbby SR, Whitley RJ. Antibiotic and chemotherapy; the problem of resistance. (8th Ed). Churchill Livingstone. 2003; 25-4 p.
Jose MM and Cesar A. Mechanisms of antibiotic resistance. Microbiol Spectr. 2016; 4(2):6-11.
Review on antimicrobial Resistance. Antimicrobial resistance: Tackling a crisis for the future health and wealth of nations 2014‟. https://www.jpiamr.eu.
Chambers HF and Deleo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 2009; 7(9):629-641.
Arthur M and Courvalin P. Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrob Agents Chemother 1993; 37(8):1563-1571.
Wibke W, Yvonne P, Solvy W, Andrea H, Rasmus L, Axel K, Petra G, Florian S. Extended-spectrum βeta-lactamase (ESBL)-producing Escherichia coli isolated from flies in the urban center of Berlin, Germany. J Environ Res Pub Health 2019; 16:1530.
Lahlaoui H, Ben Haj Khalifa A, Ben Moussa M. Epidemiology of enterobacteriaceae producing CTX-M type extended spectrum beta-lactamase (ESBL). Med Mal Infect. 2014; 44:400-404.
Hendrik TC, Voor In‟t Holt AF, Vos MC. Clinical and Molecular Epidemiology of Extended-Spectrum BetaLactamase-Producing Klebsiella spp. A Systematic Review and Meta-Analyses. PLoS ONE 2015; 10:e0140754.
Karanika S, Karantanos T, Arvanitis M, Grigoras C, Mylonakis E. Fecal Colonization with Extended-spectrum Beta-actamaseProducing Enterobacteriaceae and Risk Factors among Healthy Individuals: A Systematic Review and Meta-analysis. Clin Infect Dis. 2016; 63:310-318.
Bevan ER, Jones AM, Hawkey PM. Global epidemiology of CTX-M beta-lactamases: Temporal and geographical shifts in genotype. J Antimicrob Chemother. 2017; 72:2145-2155.
Biseko EZ, Swai HS, Mbugua RW, Ndung‟u JW, Chepng‟etich J, Gathirwa JW. In vitro antiproliferative potential of Annona
senegalensis Pers. and Allophylus africanus P Beauv. plant extracts against selected cancer cell lines. J Med Plants Res. 2019; 13(13):304-311.
Rabiu MK, Abdulkadir S, Sani AK, Gambo C. Phytochemical Compositions in Some Nigerian Medicinal Plants and Their Pharmacological Properties: A Rev J Anesth. 2018; 6(1):15-25.
Awa EP, Ibrahim S, Ameh DA. GC/MS Analysis and Antimicrobial Activity of Diethyl Ether Fraction on Methanolic Extract from the stem bark of Annona senegalensis Pers. Int J Pharm Sci Res. 2012; 3(11):4213-4218.
Mustapha AA. Annona senegalensis Persoon: A Multipurpose Shrub, It's Phytotherapic, Phytopharmacological, and Phytomedicinal uses. Int J Sci Technol. 2013; 2(12):862-865.
Igwe SA and Nwobodo NN. Anticonvulsant Activity of Aqueous Root Extract of Annona senegalensis Pers. Int J Adv Biol Biomed Res. 2014; 2(8):2441-2447.
Anthony OO, Said OH, Hamisi I, Matake MA, Oyoo OT, Mohamed P. Assessment of Antifungal Activity of Annona senegalensis Plant Parts of Malassezia globose. Nat Prod Chem Res. 2017; 5(7):1-5.
More G, Tshikalange T, Lall N, Botha F, Meyer J. Antimicrobial activity of medicinal plants against oral microorganism. J Ethnopharmacol. 2008; 119(3):473-477.
Johnson TO and Olatoye RS. Phytochemical and antimicrobial screening of aqueous and ethanolic extract of Annona senegalensis Leaf. J Med Trop. 2002; 14(2):1-5.
Awa EP, Ibrahim S, Amsh DA. GS-MS analysis and antimicrobial activity of diethyl ether fraction of methanolic extract from sterm bark of Annona senegalensis. Int J Pharm Sci Res. 2012; 3(11):4213-4218.
Ajaiyeoba E, Falacte M, Ogbole O, Okpako O, Akinboye D. Invivo antimalarial and cytotoxic properties of Annona senegalensis extract. Afr J Trad Comp Altern Med 2006; 3(1):137-141.
Okezie MU, Peter ME, Okoye FBC, Ikegbunam MN, Ugwu MC, Esimone C O. Secondary metabolites from an endophytic fungus of Vernonia amygdalina. Afr J Pharm Res Dev. 2017;9(1):24-26.
Simth BJ and Black LL. Morphological, cultural, and pathogenic variation among Colletotrichum species isolated from strawberry. Plant Dis. 1990; 74:67-69.
Aida P, Rosa V, Blamea F, Tomas A, Salvador C. Paraguyan plants used in traditional medicine.Short communicaton. J. Ethnopharmacol. 2001; 16:93-98.
Rini H, Aty W, Achmad FH, Wiwied E, Henny K, Nur IA, Wahyuni H, Malaka M. In vitro antimalarial activity of chloroform, n-butanol, and ethyl acetate fractions of ethanol extracts of Carthamus tinctorius Linn. Flowers. Asian J Pharm Clin Res. 2018; 11(2):121-123.
Ibtisam MA, Sahar KA, Amal AA, Azzah IA, Amira HA, Eida MA, Sumayh AA, Noor BA, Sayed A and Borgio JF. Identification and Antibacterial Characterization of EndophyticFungi from Artemisia sieberi. Int J Microb. 2021; 2021: 1-11
Singh A, Singh DK, Kharwar RN, White JF, Gond SK. Fungal Endophytes as Efficient Sources of Plant-Derived Bioactive Compounds and Their Prospective Applications in Natural Product Drug Discovery: Insights, Avenues, and Challenges. Micro. 2021; 9(197):1-47.
Hussain MA, Mahajan V, Rather IA. “Isolation and identification of growth promoting endophytes from Artemisia annua L. and its effects on artemisinin content,” Trends Phyto Res. 2017; 1(4):207-214.
Suryanarayanan TS. “Repository of fungal endophytes at vinstrom, Chennai:waiting to be harnessed,” Curr Sci. 2019; 117(9):1469
Ezeonu IM and Chukwudozie IK. Antimicrobial Activity, Phytochemistry and Acute Toxicity Profile of Sarcocephalius latifolius Root Bark. Trop J Nat Prod Res. 2021; 5(3):576-581.
Dikko YJ, Khan ME, Tor-Anyiin TA, Anyam JV, Linus UA. In vitro Antimicrobial Activity of Fruit Pulp Extracts of Azanza garckeana and Isolation of one of its active principles, Betulinic Acid. Br J Pharm Res. 2016; 14(1):1-10.
Eze PM, Nnanna JC, Okezie U, Buzugbe HS, Abba CC, Chukwunwejim CR, Okoye FBC, Esimone CO. Screening of metabolites from endophytic fungi of some Nigerian medicinal plants for antimicrobial activities. EuroBiotech J Pharm Biotech. 2019; 3(1):10-18.
Caio HN, Barros ID, Stephanie F, Danijela S, Ljubica T. Biogenic nanosilver against multidrug-resistant bacteria (MDRB). Antibiotics 2018; 7(69):1-24.
Ietidal EM and Tawheeda AA. Antimicrobial Activity and Cytotoxicity of Endophytic Fungi Associated with Four Medicinal Plants from Sudan. J Phytopharmacol. 2020; 9(5):348-355.
Rufin MKT, Eugenie AMK, Pierre E, Michelle IMK, Darline D, Dinkar S, Fabrice FB. Antiplasmodial potential and GC-MS fingerprint of endophytic fungal extracts derived from Cameroonian Annona muricata. J Ethnopharmacol. 2019; 235:111-121.
Wele M, Kirkman L, Diarra N, Goita Y, Doumbia M, Traore K and Diallo D. Antiplasmodial Potential and Phytochemical Screening of Ten Plants Used as Antimalarial in Mali. Eur J Med Plants. 2017; 19(4):1-9.
Elfita M, Munawar L, Darwati L. Antimalarial compounds from endophytic fungi of brotowali (Tinaspora crispa L). Indo J Chem. 2011; 11(1):53-58.
Joël ETA, Rufin MKT, Angelbert FA, Brice MM, Sebastian G, Dinkar S, Edson R, Etienne T, Fabrice FB, Norbert S, Bruno NL. Antiplasmodial properties and cytotoxicity of endophytic fungi from Symphonia globulifera (Clusiaceae). J Fungi. 2018; 4(2):70:2-11.