Profiling of Eugenol Compounds in Piperaceae, Myrtaceae, Lauraceae and Myristicaceae Using Some Analytical Methods

doi.org/10.26538/tjnpr/v5i6.1

Authors

  • Vina Maulidya Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy Universitas Padjajaran, Bandung, Indonesia
  • Aliya N. Hasanah Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy Universitas Padjajaran, Bandung, Indonesia
  • Laode Rijai Faculty of Pharmacy Universitas Mulawarman, Samarinda, Indonesia
  • Muchtaridi Muchtaridi Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy Universitas Padjajaran, Bandung, Indonesia

Keywords:

Metabolite profiling, Eugenol, GC-MS, Distillation

Abstract

Eugenol compounds contain several functional groups, namely allyl (-CH2-CH = CH2), phenol (OH) and methoxy (-OCH3). These groups allow eugenol to become the basis for the synthesis of various other compounds of higher value, such as isoeugenol and ethyl eugenol. Eugenol compounds and their derivatives have numerous benefits in various industries, such as the pharmaceutical, cosmetic and other chemical industries. Metabolite profiling is a technique that analyses all substances detected in the sample used and identifies certain metabolites, however, there has been no review regarding the method of profiling eugenol compounds in various families. For this purpose, literature searches such as PubMed, ScienceDirect, Wiley, Google and other journal publications were conducted. Several studies related to eugenol profiling reported in the Piperaceae, Myrtaceae, Lauraceae and Myristicaceae families found the highest level of eugenol is in the range 83.6%. The methods used for profiling eugenol compounds are reported as thin-layer chromatography (TLC), gas chromatography-mass spectroscopy (GC-MS) and liquid chromatography-mass spectroscopy/mass spectroscopy (LC-MS/MS). In this review, profiling of eugenol compounds is best performed by sample preparation using distillation techniques followed by GC-MS analysis.

References

Zhao Q, Zhang J, Le, Li F. Application of Metabolomics in the Study of Natural Products. Nat Prod Bioprospect. 2018; 8(4):321.

Cox DG, Oh J, Keasling A, Colson K, Hamann MT. The Utility of Metabolomics in Natural Product and Biomarker Characterization. Biochim Biophys Acta. 2014; 1840(12):3460-3474.

Sharma SK, Srivastava VK, Jasra RV. Selective Double Bond Isomerization of Allyl Phenyl Ethers Catalyzed by Ruthenium Metal Complexes. J Mol Cataly A: Chem. 2006; 245(1-2):200-209.

Tucker RP and Adams JC. Adhesion Networks of Cnidarians. Int Rev Cell Mol Biol. 2014; 11(2):323-377.

Mohammadi Nejad S, Özgüneş H, Başaran N. Öjenolün Farmakolojik Ve Toksikolojik Özellikleri. Turk J Pharm Sci. 2017; 14(2):201-206.

Pavithra B. Eugenol - A Review. J Pharm Sci Res. 2014;6(3):153-154.

Qian W, Sun Z, Wang T, Yang M, Liu M, Zhang J, Li Y. Antimicrobial Activity of Eugenol against Carbapenem-resistant Klebsiella pneumoniae and Its Effect on Biofilms. Microb Pathogen. 2020; 139:103924.

Villas-Boas SG, Mas S, Akesson M, Smedsgaars J, Nielsen J. Mass Spectrofotometry in Metabolome Analysis. Mass Spect Rev. 2005; 24:613-646.

Kopka J. Current Challenges and Developments in GC-MS based Metabolite Profiling Technology. J Biotechnol. 2006;124(1):312-322.

Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR. Gas Chromatography Mass Spectrometry–based Metabolite Profiling in Plants. Nat Protoc. 2006; 1:387-396.

Salem MA, De Souza LP, Serag A, Fernie AR, Farag MA, Ezzat SM, Alseekh S. Metabolomics in the Context of Plant Natural Products Research: From Sample Preparation to Metabolite Analysis. Metabol. 2020; 10(1):1-30.

Shyur LF, Yang NS. Metabolomics for Phytomedicine Research and Drug Development. Curr Opin Chem Biol. 2008; 12(1) 66-71.

Zhao Q, Zhang JLe, Li F. Application of Metabolomics in the Study of Natural Products. Nat Prod Bioprospect. 2018;8(4):321-334.

Abozeid A, Liu J, Ma Y, Liu Y, Guo X, Tang Z. Seed Metabolite Profiling of Vicia species from China via GC-MS. Nat Prod Res. 2018; 32(15):1863-1866.

Bernuci KZ, Iwanaga CC, Fernandez-Andrade CMM, Lorenzetti FB, Torres-Santos EC, Faiões VDS, Goncalves JE, do Amaral W, Deschamps C, Scodro RB, Cardoso R.F, Baldin VP, Cortes DAG. Evaluation of Chemical Composition and Antileishmanial and Antituberculosis Activities of Essential Oils of Piper species. Molecules. 2016; 21(12):1698.

Cevallos-Cevallos JM, Jines C, Maridueña-Zavala MG, MolinaMiranda MJ, Ochoa DE, Flores-Cedeno JA. GC-MS Metabolite Profiling for Specific Detection of Dwarf Somaclonal Variation in Banana Plants. Appl Plant Sci. 2018; 6(11):1-9.

Ginting B, Mustanir M, Helwati H, Desiyana LS, Eralisa E, Mujahid R. Antioxidant Activity of N-Hexane Extract of Nutmeg Plants From South Aceh Province. J Nat, 2017; 17(1):39.

Nam KH, Kim DY, Kim HJ, Pack IS, Kim HJ, Chung YS, Kim SY, Kim C. Global Metabolite Profiling based on GC–MS and LC–MS/MS Analyses in ABF3-overexpressing Soybean with Enhanced Drought Tolerance. Appl Bio Chem. 2019; 62(15):1-9.

Amelia B, Saepudin E, Cahyana AH, Rahayu DU, Sulistyoningrum AS, Haib J. GC-MS Analysis of Clove (Syzygium aromaticum) Bud Essential Oil from Java and Manado. AIP Conference Proceedings. 2017; 030082 (1862):1-9.

Murningsih T, Kuncari C. Methyl Eugenol, Chemotype of Essential Oils of Melaleuca spp. (Myrtaceae) Growing in Cibodas Botanical Garden. J Bio. 2009; 9(6):809-816.

Nuwa JR and Joni H. Isolation and Anti-Fungal Test of Essential Oil from Cinnamomum sintoc BL on Wood Destruction Fungi. JIPL. 2018; 13(2):32-36.

Prasetya NBA and Ngadiwiyana N. Identification of Oil Compounds from Cinnamomum Cassia Using GC-MS. J Kimia Sains Appl. 2006; 9(3):81-83.

Triantoro RGN and Susanti CME. The Chemical Content of Kulilawang (Cinnamomum culilawane Bl.) and Masoi (Cryptocaria massoia) Wood. J Tek Trop. 2018; 5(2):85-92.

Foo LW, Salleh E, Nur S, Mamat H. Extraction and Qualitative Analysis of Piper Betle Leaves for Antimicrobial Activities. Int J Eng Tech Sci Res. 2015; 2(2):2394-3386.

Madhumita M, Guha P, Nag A. Extraction of Betel Leaves (Piper betle L.) Essential Oil and its Bio-actives Identification: Process Optimisation, GC-MS analysis and Anti-microbial Activity. Ind Crops Prod. 2019; 138:111578.

Boangmanalu RK and Zuhrotun BA. Article Review: Potential Medicinal Efficacy in Plants: Piper nigrum L., Piper retrofractum Vahl., Piper betle Linn., Piper cubeba L., and Piper crocatum Ruiz & Pav. J Farm. 2018; 16:204-212.

Munawaroh E and Yuzammi D. Piper Diversity (Piperaceae) and Its Conservation in Bukit Barisan Selatan National Park, Lampung Province. Media Konservasi. 2017; 22(2):118-128.

Islam MA, Ryu KY, Khan N, Song OY, Jeong JY, Son JH, Jamila N, Kim KS. Determination of the Volatile Compounds in Five Varieties of Piper betle L. from Bangladesh Using Simultaneous Distillation Extraction and Gas Chromatography/Mass Spectrometry. Anal Lett. 2020; 53(1):1-18.

Sarma C, Rasane P, Kaur S, Singh J, Singh J, Gat Y, Garba U, Kaur D, Dhawan K. Antioxidant and Antimicrobial Potential of Selected Varieties of Piper betle L. (Betel Leaf). An Acad Bras Cienc. 2018; 90(4):3871-3878.

Sheikh P and Muderawan IW. Chemical Content Analysis of Piper Betle Extract by GC-MS. Pros Sem Nas. 2012. ISBN978-602-6428-00-4:304-310.

Dewi SR, Nugroho WA, Hendrawan Y, Nisa GK. Characterization of Ethanol Extract of Piper crocatum. Pros Sem Nas. 2015; 53(9):338-347.

Mohammed GJ, Omran AM, Hussein HM. Antibacterial and Phytochemical Analysis of Piper nigrum using Gas Chromatography – Mass Spectrum and Fourier-Transform Infrared Spectroscopy. Int J Pharmacogn Phytochem Res. 2016;8(6):977–996.

Ashrafudoulla M, Mizan MFR, Ha AJ, Park SH, Ha S. Antibacterial and Antibiofilm Mechanism of Eugenol against Antibiotic Resistance Vibrio parahaemolyticus. Food Microbiol. 2020; 91:103500.

Astuti P, Wahyono, Nababan OA. Antimicrobial and Cytotoxic Activities of Endophytic Fungi isolated from Piper crocatumRuiz & Pav. Asian Pac J Trop Biomed. 2014; 4(2):S592-S596.

Choudhury P, Barua A, Roy A, Pattanayak R, Bhattacharyya M, Saha P. Eugenol Restricts Cancer Stem Cell Population by Degradation of β-catenin via N-terminal Ser37 Phosphorylationan In Vivo and In Vitro Experimental Evaluation. Chem Biol Interact. 2020; 316:108938.

Liu L, Song G, Hu Y. GC-MS Analysis of the Essential Oils of Piper nigrum L. and Piper longum L. Chrom. 2007; 66(9):785-790.

Nisa GK, Nugroho WA, Hendrawan Y. Extraction of Piper Crocatum by Microwave Assisted Extraction (Mae) Method. J Bio Trop. 2014; 2(1):72-78.

Prabawati SY and Agustina AF. Utilization of Natural Ingredients for Eugenol as Antioxidants. Kaunia. 2015; 11(1):11-18.

Puspita PJ, Safithri M, Sugiharti NP. Antibacterial Activities of Sirih Merah (Piper crocatum) Leaf Extracts. C Biochem. 2018; 5(3):1-10.

Batiha GES, Alkazmi LM, Wasef LG, Beshbishy AM, Nadwa EH, Rashwan EK. Syzygium aromaticum L. (Myrtaceae): Traditional Uses, Bioactive Chemical Constituents, Pharmacological and Toxicological Activities. Biomolecules. 2020; 10(2):1-17.

Boughendjioua H. Essential Oil Composition of Syzygium aromaticum (L.). Int Res J Pharm Med Sci. 2018; 1(3):26-28.

Abdul A. Identification and Isolation of Non Polar, Semipolar and Non Polar of n-hexane fractionated from Ethanol Extracts of Piper betle L. by TLC Scanner and GC-MS methods. J Farm. 2018; 1(2):88-98.

Diniatik AM and Purwaningrum O. Antivirus Activity Test on Ethanol Extract of Piper crocatum Ruitz & Pav against viruses Newcastle Disease (ND) and Profile TLC. Pharm. 2011; 8(1):51-70.

Rodriguez OE, Sánchez RM, Verde MJ, Núñez MA, Castro R, Chávez A. Obtaining of the Essential Oil of Syzygium aromaticum, Identification of Eugenol and Its Effect on Streptococcus mutans. J Oral Res. 2014; 3(4):218-224.

Wirasuta I, Wage I, Dewi C, Dewi N, Julianty N, Wirajaya I, Astuti N. Optimization of the GC-MS System in the Analysis of Piper Betle L. Essential Oil. J Pharm. 2016; 3(2):112-118.

Hao CY, Fan R, Qin XW, Hu LS, Tan LH, Xu F, Wu BD. Characterization of Volatile Compounds in Ten Piper Species Cultivated in Hainan Island, South China. Int J Food Prop. 2018;21(1):633-644.

Sazwi N, Thurairajah N, Zubaidah HAR. Antioxidant and Cytoprotective Activities of Piper betle, Areca catechu, Uncaria gambir and Betel Quid With and Without Calcium Hydroxide. BMC Compl Med. 2013; 13:351.

Scott IM, Puniani E, Jensen H, Livesey JF, Poveda L, SánchezVindas P, Durst T, Arnason JT. Analysis of Piperaceae germplasm by HPLC and LC-MS: A Method for Isolating and Identifying Unsaturated Amides from Piper spp Extracts. J Agric Food Chem. 2005; 53(6):1907-1913.

Kurniawan A, Rahayu WS, Wahyuningrum R. Comparison of the essential oil eugenol content in Syzygium aromaticum (L) Merr & Perry that grows in the highlands and lowlands. Pharm. 2009; 6(3):83-93.

Suryasnata D, Sandeep S, Parida R, Nayak S, Mohanty S. Variation in Volatile Constituents and Eugenol Content of Five Important Betelvine (Piper betle L.) Landraces Exported from Eastern India. JEOP. 2016; 19(7):1788-1793.

Jeon DB, Hong YS, Lee GH, Park YM, Lee CM, Nho EY, Choi JY, Jamila N, Khan N, Kim KS. Determination of Volatile Organic Compounds, Catechins, Caffeine and Theanine in Jukro Tea at Three Growth Stages by Chromatographic and Spectrometric Methods. Food Chem. 2017; 219:443–452.

Khan N, Jamila N, Choi JY, Nho EY, Hussain I, Kim KS. Effect of Gamma-Irradiation on the Volatile Flavor Profile of Fennel (Foeniculum vulgare Mill.) from Pakistan. Pak J Bot. 2015;47(5):1839-1846.

Downloads

Published

2021-06-01

How to Cite

Maulidya, V., Hasanah, A. N., Rijai, L., & Muchtaridi, M. (2021). Profiling of Eugenol Compounds in Piperaceae, Myrtaceae, Lauraceae and Myristicaceae Using Some Analytical Methods: doi.org/10.26538/tjnpr/v5i6.1. Tropical Journal of Natural Product Research (TJNPR), 5(6), 988–993. Retrieved from https://tjnpr.org/index.php/home/article/view/522