LC-MS Based Secondary Metabolites Profile of Elaeocarpus grandiflorus J.E. Smith. Cell Suspension Culture Using Picloram and 2,4-Dichlorophenoxyacetic Acid doi.org/10.26538/tjnpr/v5i8.13

Main Article Content

Noor A. Habibah
Yustinus U. Anggraito
Nugrahaningsih Nugrahaningsih
Safitri Safitri
Fajar Musafa
Nur Wijayati

Abstract

Elaeocarpus grandiflorus contains prominent bioactive compounds. The bioactive metabolites can be increased using the cell suspension culture technique by adding synthetic auxin, including picloram and 2,4-dichlorophenoxyacetic acid (2,4-D). Therefore, this study aimed to analyze the effect of picloram and 2,4-D on the secondary metabolite profile of E. grandiflorus cell suspension culture. Petioles of young leaves from E. grandiflorus were used as explants for callus induction, and then the callus was used for cell suspension culture. The cell culture was maintained on a woody plant medium (WPM) for 30 days supplemented with picloram (3.5 mg/L; 5.0 mg/L; and 7.5 mg/L), or 2,4-D (1.5 mg/L; 2.5 mg/L; and 3.5 mg/L). The 2.5 mg/L  2,4-D treatment with the highest dry weight was harvested every five days until the 30th day. Secondary metabolites in all treatments showed no significant difference (P = 0.949, F3.6 = 0.228), and the highest content of secondary metabolites was kaempferols which was up to 24.29 ± 0.77%, while the total average flavonoid content was up to 55.69 ± 0.96%. In addition, the secondary metabolites did not change significantly for 30 days (P = 0.974, F3.6 = 0.279). Most plant energy and hormones were used for cell division and growth instead of secondary metabolite biosynthesis during this period. This study showed that picloram and 2.4- D induction have no significantly different effect on the secondary metabolite profile in the E. grandiflorus cell suspension culture. 

Downloads

Download data is not yet available.

Article Details

How to Cite
A. Habibah, N., U. Anggraito, Y., Nugrahaningsih, N., Safitri, S., Musafa, F., & Wijayati, N. (2021). LC-MS Based Secondary Metabolites Profile of Elaeocarpus grandiflorus J.E. Smith. Cell Suspension Culture Using Picloram and 2,4-Dichlorophenoxyacetic Acid: doi.org/10.26538/tjnpr/v5i8.13. Tropical Journal of Natural Product Research (TJNPR), 5(8), 1403-1408. https://tjnpr.org/index.php/home/article/view/458
Section
Articles

How to Cite

A. Habibah, N., U. Anggraito, Y., Nugrahaningsih, N., Safitri, S., Musafa, F., & Wijayati, N. (2021). LC-MS Based Secondary Metabolites Profile of Elaeocarpus grandiflorus J.E. Smith. Cell Suspension Culture Using Picloram and 2,4-Dichlorophenoxyacetic Acid: doi.org/10.26538/tjnpr/v5i8.13. Tropical Journal of Natural Product Research (TJNPR), 5(8), 1403-1408. https://tjnpr.org/index.php/home/article/view/458

References

Rahayu ES, Dewi NK, Bodijantoro FPMH. Profile of Elaeocarpus grandiflorus and Ziziphus mauritiana as identity plants of Salatiga and Tegal towns, Central Java Province, Indonesia. J Phys Conf Ser. 2018; 983(1):012195.

Prasannan P, Jeyaram Y, Pandian A, Raju R, Sekar S. A Review on taxonomy, phytochemistry, pharmacology, threats and conservation of Elaeocarpus L. (Elaeocarpaceae). Bot Rev. 2020: 86(8): 298–328.

HardainiyanS, Nandy BC, KumarK. Elaeocarpus ganitrus(Rudraksha): A reservoir plant with their pharmacological effects. Int J Pharm Sci Rev Res. 2015: 34(1):55-64.

Bualee C, Ounaroon A, Jeenapongsa R. Antidiabetic and Long-term Effects of Elaeocarpus grandiflorus. Naresuan Univ J. 2007; 15(1):17-28.

Suparmi S, Widiastuti D, Wesseling S, Rietjens IMCM. Natural occurrence of genotoxic and carcinogenic alkenylbenzenes in Indonesian amu and evaluation of consumer risks. Food Chem Toxicol. 2018; 118(2):53-67.

Ribeiro Filho J, de Sousa Falcao H, Maria Batista L, Maria Barbosa Filho J, Regina Piuvezam M. Effects of Plant Extracts on HIV-1 Protease. Curr HIV Res. 2010; 8(7):531-544.

Yue W, Ming QL, Lin B, Rahman K, Zheng CJ, Han T, Qin LP. Medicinal plant cell suspension cultures: Pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Crit Rev Biotechnol. 2016; 36(2):215-232.

Corbin JM, McNulty MJ, Macharoen K, McDonald KA, Nandi S. Technoeconomic analysis of semicontinuous bioreactor production of biopharmaceuticals in transgenic rice cell suspension cultures. Biotechnol Bioeng. 2020; 117(10):3053-3065.

Santos RB, Abranches R, Fischer R, Sack M, Holland T. Putting the spotlight back on plant suspension cultures. Front Plant Sci. 2016; 7(3):1-12.

Dias MI, Sousa MJ, Alves RC, Ferreira ICFR. Exploring plant tissue culture to improve the production of phenolic compounds: A review. Ind Crops Prod. 2016; 82:9-22.

Habibah NA, Moeljopawiro S, Dewi K, Indrianto A. Flavonoid production in callus cultures from mesocarp Stelechocarpus burahol. Biosaintifika J Biol Biol Educ. 2016; 8(2):214-221.

Habibah NA, Nugrahaningsih WH, Musafa F, Rostriana Y, Mukhtar K, Wijawati N, Anggraito YU. Bioactive compounds from callus culture of Elaeocarpus grandiflorus. J Phys Conf Ser. 2020; 1567(3):032055

Anggraito YU, Nugrahaningsih WH, Musafa F, Mukhtar K, Wijawati W, Rostriana Y,Safitri Habibah NA. Secondary metabolites in Elaeocarpus grandiflorus cell culture in WPM medium with various concentrations of PGR. J PhysConf Ser. 2020; 1524(1):5-10.

Habibah NA, Nugrahaningsih WH, Ulung Anggraito Y, Mukhtar K, Wijayanti N, Mustafa F, Rostriana Y. Effect of growth regulators on cell growth and flavonoid production in cell culture of Elaecarpus grandiflorus. IOP Conf Ser Earth Environ Sci. 2019; 391(1):012061

Hao G, Du X, Zhao F, Shi R, Wang J. Role of nitric oxide in UV-B-induced activation of PAL and stimulation of flavonoid biosynthesis in Ginkgo biloba callus. Plant Cell Tissue Organ Cult. 2009; 97(2):175-185.

Habibah NA, Moeljopawiro S, Dewi K, Indrianto A. Flavonoid production, growth and differentiation of Stelechocarpus burahol (Bl.) hook. f. and th. cell suspension culture. Pakistan J Biol Sci. 2017; 20(4):197-203.

Zaman MAK, Azzeme AM, RamLe IK, Normanshah N, RamLi SN, Shaharuddin NA, Ahmad S, Abdullah SNA. Induction, multiplication, and evaluation of antioxidant activity of Polyalthia bullata callus, a woody medicinal plant. Plants. 2020; 9(12):1-21.

Anjusha S and Gangaprasad A. Callus culture and in vitro production of anthraquinone in Gynochthodes umbellata(L.) Razafim. & B. Bremer (Rubiaceae). Ind Crops Prod. 2017; 95(1):608-614.

Gurel E, Yucesan B, Aglic E, Gurel S, Verma SK, Sokmen M, Sokmen A. Regeneration and cardiotonic glycoside production in Digitalis davisiana Heywood (Alanya foxglove). Plant Cell Tiss Organ Cult. 2011; 104(2):217-225.

Song Y. Insight into the mode of action of 2,4-dichlorophenoxyacetic acid (2,4-D) as an herbicide. J Integr Plant Biol. 2014; 56(2):106-113.

Swarup R and Péret B. AUX/LAX family of auxin influx carriers-An overview. Front Plant Sci. 2012; 3(10):1-11.

Shen CJ, Bai YH, Wang SK, Zhang SN, Wu YR, Chen M, Jiang DA, Qi YH. Expression profile of PIN, AUX/LAX and PGP auxin transporter gene families in Sorghum bicolor under phytohormone and abiotic stress. FEBS J. 2010; 277(14):2954-2969.

Yamauchi T, Tanaka A, Inahashi H, Nishizawa NK, Tsutsumi N, Inukai Y, Nakazono M. Fine control of aerenchyma and lateral root development through AUX/IAA- And ARF-dependent auxin signaling. Proc Nat Acad Sci USA. 2019; 116(41):20770-20775.

Luo J, Zhou JJ, Zhang JZ. Aux/IAA gene family in plants: Molecular structure, regulation, and function. Int J Mol Sci. 2018; 19(1):1-17.

Uchida N, Takahashi K, Iwasaki R, Yamada R, Yoshimura M, Endo TA, Kimura S, Zhang, Nomoto M, Tada Y, Kinoshita T, Itami K, Hagihagra& Keiko U Torii Chemical hijacking of auxin signaling with an engineered auxin-TIR1 pair. Nat Chem Biol. 2018; 14(3):299-305.

Fendrych M, Akhmanova M, Merrin J, Glanc M, Hagihara S, Takahashi K, Uchida N Utorii K, FrimL J. Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nat Plants. 2018; 4(7):453-459.

Li SB, Xie ZZ, Hu CG, Zhang JZ. A review of auxin response factors (ARFs) in plants. Front Plant Sci. 2016; 7: 1–7.

Dayan FE, Duke SO, Grossmann K. Herbicides as Probes in Plant Biology. Weed Sci. 2010; 58(3):340-350.

Hasegawa J, Sakamoto T, Fujimoto S, Yamashita T, Suzuki T, Matsunaga S. Auxin decreases chromatin accessibility through the TIR1/AFBs auxin signaling pathway in proliferative cells. Sci Rep. 2018; 8(1):1-12.

Silveira SS, Sant’anna-Santos BF, Degenhardt-Goldbach J, Quoirin M. Somatic embryogenesis from mature split seeds of jaboticaba (Plinia peruviana (poir) govaerts). Acta Sci -Agron. 2020; 42:1-11.

Chandler JW. Auxin response factors. Plant Cell Environ. 2016; 39(5): 1014–28.

Dudits D, Cserháti M, Miskolczi P, Horváth G V. The growing family of plant cyclin-dependent kinases with multiple functions in cellular and developmental regulation. Cell Cycle Control Plant Dev. 2007; 32:1-30.

Vieira P and Engler J de A. Plant cyclin-dependent kinase inhibitors of the KRP family: Potent inhibitors of root-knot nematode feeding sites in plant roots. Front Plant Sci. 2017; 8(9): 1514-1523

Iglesias MJ, Terrile MC, Correa-Aragunde N, Colman SL, Izquierdo-Álvarez A, Fiol DF, París R, Sánchez-López N, Marina A, Villalobos LIAC, Estelle M, Lamattina L, Martínez-Ruiz A, Casalongué CA. Regulation of SCFTIR1/AFBs E3 ligase assembly by S-nitrosylation of Arabidopsis SKP1-like1 impacts on auxin signaling. Redox Biol. 2018; 18(6):200-210.

Dindas J, Scherzer S, Roelfsema MRG, Von Meyer K, Müller HM, Al-Rasheid KAS, Palme K, Dietrich P, Becker D, Bennett MJ, Hedrich R. AUX1-mediated root hair auxin influx governs SCFTIR1/AFB-type Ca2+ signaling. Nat Commun. 2018; 9(1):1-10

Shimotohno A and Umeda M. 5 CDK phosphorylation. In: Inzé D (Eds). Cell cycle control and plant development. New Jersey: Blackwell Publishing Ltd; 2007. 114-138 p.

Erb M and Kliebenstein DJ. Plant secondary metabolites as defenses, regulators, and primary metabolites: The blurred functional trichotomy. Plant Physiol. 2020; 184(1):39-52.

Pachauri S, Chatterjee S, Kumar V, Mukherjee PK. A dedicated glyceraldehyde-3-phosphate dehydrogenase is involved in the biosynthesis of volatile sesquiterpenes in Trichoderma virens—evidence for the role of a fungal GAPDH in secondary metabolism. Curr Genet. 2019; 65(1):

-52.

Caser M, Chitarra W, D’Angiolillo F, Perrone I, Demasi S, Lovisolo C, Pistellie L, Pistelli L, Scariota V. Drought stress adaptation modulates plant secondary metabolite production in Salvia dolomitica Codd. Ind Crops Prod. 2019; 129(6): 85-96.

Chitturi J, Santhakumar V, Kannurpatti SS. Beneficial effects of kaempferol after developmental traumatic brain injury is through protection of mitochondrial function, oxidative metabolism, and neural viability. J Neurotrauma. 2019; 36(8):1264-1278.

Han X, Liu CF, Gao N, Zhao J, Xu J. Kaempferol suppresses proliferation but increases apoptosis and autophagy by up-regulating microRNA-340 in human lung cancer cells. Biomed Pharmacother. 2018; 108(826):809-816.

Ren J, Lu Y, Qian Y, Chen B, Wu T, Ji G. Recent progress regarding kaempferol for the treatment of various diseases (Review). Exp Ther Med. 2019; 18(8):2759-2576.

Zabalza A, Orcaray L, Fernández-Escalada M, ZuletGonzález A, Royuela M. The pattern of shikimate pathway and phenylpropanoids after inhibition by glyphosate or quinate feeding in pea roots. Pestic Biochem Physiol. 2017; 141(9):96-102.