Phytochemical Profile and Antioxidant Activity of Hydroalcoholic Extracts of Corynaea crassa Hook. f (Balanophoraceae)

doi.org/10.26538/tjnpr/v5i8.3

Authors

  • Alexandra J. López-Barrera Department of Pharmacy, Faculty of Chemical Sciences. Universidad de Guayaquil. Guayaquil-Ecuador https://orcid.org/0000-0002-7269-6305
  • Migdalia Miranda-Martínez Department of Chemical and Environmental Sciences. Faculty of Natural Sciences and Mathematics. Escuela Superior Politécnica del Litoral. Guayaquil. Ecuador
  • Yamilet I. Gutiérrez-Gaitén Department of Pharmacy. Institute of Pharmacy and Food. Universidad de La Habana. Cuba. https://orcid.org/0000-0002-8885-4849

Keywords:

Corynaea crassa, Phytochemical, Antioxidant, Ecuador, Peru

Abstract

Corynaea crassa Hook is a hemiparasitic plant distributed in many regions of America. It has traditionally been ascribed to have aphrodisiac and antimicrobial activities. The objective of this research is to analyze the chemical composition and antioxidant activity of hydroalcoholic extracts of C. crassa from Ecuador and Peru. The whole plant was used for the preparation of the extract. The extracts were made by percolation with 80% ethanol, and the chemical composition was evaluated by ultraviolet visible (UV/VIS), infrared (IR) spectroscopy and Liquid Chromatography-Mass Spectrometry (LC-MS). The quantification of phenols was done by using the Folin-Ciocalteu method, the flavonoids were quantified by using the aluminum chloride method. The antioxidant activity was tested by Ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assays. UV/VIS spectroscopy of the extracts revealed similar spectral appearance, which denoted the presence of  flavonoids and an IR profile characteristic of phenolic compounds, with coincident bands between the extracts but different in intensity and width. Phenols and flavonoids were higher for the Ecuadorian plant extract. The LC-MS study detected catechin, quercetin glycoside, and a flavanone glycoside, for the first time. It was shown that the antioxidant capacity of extracts was similar or superior to the tested substances (Vitamin C and Trolox), with the activity of the Ecuadorian extract being higher. The study of the chemical composition and antioxidant properties of C. crassa, has given credence to the use of the plant in traditional medicine.

Author Biography

Migdalia Miranda-Martínez, Department of Chemical and Environmental Sciences. Faculty of Natural Sciences and Mathematics. Escuela Superior Politécnica del Litoral. Guayaquil. Ecuador

References

Imarhiagbe O and Aigbokhan EI. Studies on Thonningia sanguinea VAHL. (Balanophoraceae) in southern Nigeria. Range and host preference. Int J Conserv Sci. 2019; 10(4):721-732.

Cárdenas LOA. Balanophoraceae. Flora de Guerrero. 69, Publisher: Facultad de Ciencias, UNAM. 2016.4-11 p.

Thorogood C, Leon, C, Aldughayman, M, Huang, L, Hawkins, J., Desert hyacinths: An obscure solution to a global problem? Plants, People, Planet. [Online]. 2020, 2-181-185. [Cited 22 March 2020] Available from: https://doi.org/10.1002/ppp3.10102.

Martínez J and Acevedo R. Flora de Veracrúz. Balanophoracea. Instituto de Ecologia AC. Xalapa, Ver.

University of California, Riverside, CA. [Online]. 1995. (Cited 2020 Dec 10). Available from: https://www 1.inecol.edu.mx/publicaciones/resumeness/ FLOVER/85-Martinez.pdf.

Sato HA and González MA. Floral development, and anatomy of pistillate flowers of Lophophytum(Balanophoraceae), with special reference to the embryo sac inversion. Flora 2016; 219:35-47.

Trópicos. Flora Mesoamericans. Corynaea crassa Hook. f. [Online]. 2012. (Cited 2020 Dec 10. Available from:

http://www.tropicos.org/name/03000026?projectid=3.

Bussmann R, Glenn D, Sharon G, Chait D, Díaz K, Pourmand B. Prueba de que el conocimiento tradicional funciona: la actividad antibacteriana de las plantas medicinales del norte del Perú. Ethnobot Res Appl. 2011;

:67-96.

Acaro CF and Arroyo AJ. Efecto del extracto de Corynaea crassa y selenio en la disfunción sexual inducida en Rattus norvegicus albinus. Rev Peru. Med Integr. 2019; 4(3):83-89.

Malca G, Henning L, Sieler J, Bussmann R. Constituyentes de Corynaea crassa “Viagra peruano”. Rev Brasileira de Farmacogn. 2015; 25(2):92-97.

López BAJ, Gutiérrez GYI, Miranda MM, Choez GIA, Ruíz RSG, Scull LR. Pharmacognostic, Phytochemical, and

Anti-Inflammatory Effects of Corynaea crassa: A Comparative Study of Plants from Ecuador and Peru. Pharmacogn Res. 2020; 12:394-402.

Bussmann RW and Glenn A. Medicinal plants used in Northern Peru for reproductive problems and female

health. J Ethnobiol Ethnomed. 2010; 6(30):1-12.

Miranda MM and Cuéllar AC. Manual de prácticas de laboratorio. Farmacognosia y productos naturales.

Universidad de la Habana. Ciudad Habana, Cuba. 2000; 25- 49:74-79.

Pourmorad F, Hosseinimerhr SJ, Shahabimajd N. Antioxidant activity, phenol, and flavonoid contents of some selected Iranian medicinal plants. Afr J Biotechnol. 2006; 5(11):1142-1145.

Chang C, Yang M, Wen H, Chern J. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal. 2002; 10(3):178-182.

Benzie IFF and Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The

FRAP assay. Anal Biochem. 1996; 239:70-76.

Brand-Williams W, Cuvelier ME, Berset C. Use of free radical method to evaluate antioxidant activity. Lebensm

Wiss Technol. 1995; 22:25-30.

Kedare SB and Singh RP. Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol.

; 48(4):412-422.

Arnao MB, Cano A, Acosta M. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem Barking. 2001; 73(2):239-244.

Agudo LM. Técnicas para la determinación de compuestos antioxidante en alimentos. Autodidacta. Rev de la

Educación en Extremadura 2010; 27-34.

Abad GB, Berrueta LA, Garmon LS, Gallo B, Vicente F. A general analytical strategy for the characterization of

phenolic compounds in fruit juices by high-performance liquid chromatography with diode array detection coupled to electrospray ionization and triple quadrupole mass spectrometry. J Chromatogr A. 2009; 1216: 5398-5415.

Martínez J, García C, Durango D, Gil J. Caracterización de propóleos provenientes del municipio de Caldas obtenido por dos métodos de recolección. Rev MVZ Córdoba. 2012; 17(1):2861-2869.

Silverstein RM, Webster FX, Kiemle DJ. Spectrometric identification of organic compounds. Seventh edition. John Wiley & Sons INC. New York, 2005. 73-116 p.

Pérez MCS and Ortiz del Toro PJ. Espectroscopia. Tomo I. Editorial Félix Varela. Editoriaal Universitaria. La Habana. 2015. 171-202 p.

Kale A, Gaikwad S, Mundhe K, Deshpande N and Salvekar J. Quantification of phenolics and flavonoids by spectrophotometer from Juglans regia. Int J Pharm Bio Sci. 2010; 1:1-4.

Pekal A and Pyrznska K. Evaluation of Aluminium Complexation Reaction for Flavonoid Content Assay. Food Anal Meth. 2014; 7:1776-1782.

Silva V, Falco V, Dias MI, Barros L, Silva A, Capita R. Evaluation of the phenolic profile of Castanea sativa Mill. By-products and their antioxidant and antimicrobial activity against multiresistant bacteria. Antioxid. 2016; 9(87):1-14.

Liu W, Yin D, Li N, Hou X, Wang D, Li D. Influence of environmental factors on the active substance production

and antioxidant activity in Potentilla fruticosa L. and its quality assessment. Sci Rep. 2016; 6:28591.

Cai RJ, Yin XL, Liu J, Zhao GZ. Characterization and identification of in vitro metabolites of (-)-epicatechin using

ultra-high performance liquid chromatography-mass spectrometry. Trop J Pharm Res. 2017; 16(12):2985-2990.

Fabre N, Rustan I, de Hoffmann E, Quetin-Leclercq J. Determination of flavone, flavonol, and flavanone

aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J Am Soc Mass Spectr. 2001; 12(6):707-715.

Tupac J, Mora M, Costa JF. First host record for the root parasite Corynaea crassa (Balanophoraceae). Acta Biol

Colomb. 2009; 1(4):199-204.

Nina N, Theoduloz C, Gimenez A, Schmeda-Hirschmann G. Phenolics from the Bolivian Highlands food plant Ombrophytum subterraneum (Aspl) B. Hansen (Balanophoraceae): antioxidant and α glucosidase inhibitory activity. Food Res Int. 2020; 137:109382.

Bracci A, Amat AFG, Maione F, Cicala C, Mascolo N, De Feo V. Diuretic Activity of Lophophytum leandri. Nat Prod

Commun. 2012; 7(1):33-34.

Li M, Pare PW, Zhang J, Kang T, Zhang Z, Yang D. Antioxidant Capacity Connection with Phenolic and Flavonoid Content in Chinese Medicinal Herbs. Rec Nat Prod. 2018; 12(3):239-250.

Gai-Mei S, Jin-Bo H, Ying-Jun Z, Chong-Ren Y. Phenolic constituents from Rhopalocnemis phalloides with DPPH

radical scavenging activity. Pharm Biol. 2010; 48(1):116-119.

Al-humaidi, J. Phytochemical screening, total phenolic and antioxidant activity of crude and fractionated extracts of Cynomorium coccineum growing in Saudi Arabia. Eur J Med Plants. 2016; 11(4):1-9.

Chang J, Lai S, Chen W, Hung W, Chow, J, Hsiao M. Quercetin suppresses the metastatic ability of lung cancer

through inhibiting snail-dependent Akt activation and snail-independent ADAM9 expression pathways. BBA Mol Cell Res. 2017; 1864: 1746-1758.

Bae J, Kim N, Shin Y, Kim SY, Kim YJ. Activity of catechins and their applications. Biomed Dermatol. 2020;

(8):470-477.

Yang D, Wang T, Long M, Li P. Quercetin: It’s Main Pharmacological Activity and Potential Application in

Clinical Medicine. Oxid Med Cell Longev. 2020. doi: 10.1155/2020/8825387. PMID: 33488935; PMCID: PMC7790550.

Pudziuvelyte L, Liaudanskas M, Jekabsone A, Sadauskiene I, Bernatoniene J. Elsholtzia ciliata (Thunb.) Hyl. Extracts from different plant parts: Phenolic composition, antioxidant, and anti-inflammatory activities. Mol. 2020;

(5):1153-1162.

Zeng Y, Song J, Zhang M, Wang H, Zhang Y, Suo H. Comparison of In Vitro and In Vivo Antioxidant Activities

of Six Flavonoids with Similar Structures. Antioxid. 2020; 9:732.

Kuskoski EM, Agustín GA, Troncosa MA, Manzini FJ, Roseane F. Aplicación de diversos métodos químicos para

determinar la actividad antioxidante en pulpa de frutos. Cienc Tecnol Aliment Campinas. 2005; 25(4):726-732.

Granda H and De Pascual TS. Interaction of polyphenols with other food components as a means for their

neurological health benefits. J Agric Food Chem. 2018; 66(31):8224-8230.

Khan W, Subhan S, Farhan SD, Gul AS, Ullah R, Shahat AA. Antioxidant Potential, Phytochemicals Composition,

and Metal Contents of Datura alba. BioMed Res Int. 2019; vol. 2019: 1-8.

Merghem M, Dahamna S, Khennouf S. In Vivo Antioxidant Activity of Ruta montana L. Extracts. J Mater Environ Sci.2019; 10(5):470-477.

Widodo H, Sismindari S, Asmara W, Rohman A. Antioxidant activity, total phenolic and flavonoid contents

of selected medicinal plants used for liver diseases and its classification with chemometrics. J Appl Pharm Sci. 2019; 9(06):99-105.

Downloads

Published

2021-08-01

How to Cite

J. López-Barrera, A., Miranda-Martínez, M., & I. Gutiérrez-Gaitén, Y. (2021). Phytochemical Profile and Antioxidant Activity of Hydroalcoholic Extracts of Corynaea crassa Hook. f (Balanophoraceae): doi.org/10.26538/tjnpr/v5i8.3. Tropical Journal of Natural Product Research (TJNPR), 5(8), 1340–1347. Retrieved from https://tjnpr.org/index.php/home/article/view/436