High-Throughput Virtual Screening with Molecular Docking, Pharmacophore Modelling and ADME Prediction to Discover Potential Inhibitors of Plasmodium falciparum Lactate Dehydrogenase (PfLDH) from Compounds of Combretaceae Family

doi.org/10.26538/tjnpr/v5i9.22

Authors

  • Babatunde B. Samuel Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Nigeria
  • Wande M. Oluyemi Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Nigeria
  • Titilayo O. Johnson Department of Biochemistry, Faculty of Medical Sciences, University of Jos, Nigeria
  • Abayomi E. Adegboyega Department of Biochemistry, Faculty of Medical Sciences, University of Jos, Nigeria

Keywords:

Combretaceae, Antimalarial, pfLDH, Molecular docking, Pharmacophore modelling

Abstract

The increased prevalence of malaria requires continuous efforts towards the discovery of natural antimalarial agents targeting important biochemical pathways of the parasite. The Plasmoduim falciparum lactate dehydrogenase (pfLDH) is a glycolytic enzyme whose critical roles and unique characteristics make it an efficient antimalarial target. The aim of this study was to employ in silico methods to identify potential inhibitors of pfLDH from the selected bioactive compounds of Combretaceae species. One hundred and fifty (150) Combretaceae compounds were screened using molecular docking analysis on Schrödinger Maestro 12.5, followed by pharmacophore modelling and ADMET (absorption, distribution, metabolism, excretion and toxicity) study of the highest affinity compounds. Myricetin 3-O-glucoside and 2''-O-Galloylisovitexin showed higher binding affinities (-13.413 Kcal/mol and -12.896 Kcal/mol respectively) for pfLDH compared with -10.400 Kcal/mol displayed by nicotinamide adenine dinucleotide (NADH) (the co-factor). They interacted with GLY27, GLY29, MET30, ILE31, ASP53, GLY99, THR101 and TYR247 at the NADH binding site of the enzyme. The pharmacophore modelling showed the involvement of aromatic rings and hydrogen bond donors and acceptors in the interactions of the compounds with the target. Hence, these compounds could be said to possess the structural features, binding affinities and molecular interactions required as inhibitors of pfLDH and could be developed into antimalarial drugs following lead optimisation and experimental studies. 

References

Tizifa TA, Kabaghe AN, McCann RS, van den Berg H, Van Vugt M, Phiri KS. Prevention Efforts for Malaria. Curr Trop Med Rep. 2018; 5(1):41-50.

Shadrack DM, Nyandoro SS, Munissi JJE, Mubofu EB. In Silico Evaluation of Anti-Malarial Agents from Hoslundia opposita as Inhibitors of Plasmodium falciparum Lactate Dehydrogenase (PfLDH) Enzyme. Comp Mol Bio. 2016; 6(2):23-32.

Johnson TO, Istifanus G, Kutshik RJ. In vitro and in vivoanalysis of the anti-plasmodial activity of ethanol extract of Phyllanthus nivosus W. Bull leaf. J Parasit Dis. 2020; 44(1): 166-173.

Mishra M, Agarwal S, Dixit A, Mishra VK, Kashaw V, Agrawal RK, Kashaw SK. Integrated computational investigation to develop molecular design of quinazoline scaffold as promising inhibitors of plasmodium lactate dehydrogenase. J Mol Struct. 2020; 1207(1):127808.

World Health Organisation. World malaria report. [online]. 2018. [cited 2021 Feb. 11] Available from: https://www.who.int/teams/global-malariaprogramme/reports/world-malaria-report-2018

World Health Organisation. World malaria report. [online]. 2019. [cited 2021 Feb. 11] Available from: https://www.who.int/campaigns/world-malaria-day/worldmalaria-day-2019

Tahghighi A, Mohamadi-Zarch S, Rahimi H, Marashiyan M, Maleki-Ravasan N, Eslamifar A. In silico and in vivoantimalarial investigation on 1-(heteroaryl)-2-((5-nitroheteroaryl) methylene) hydrazine derivatives. Malar J. 2020; 19(1):1-12

Johnson TO. Transmission Blocking Strategy for Malaria Eradication: The Role of Antimalarial Agents. Int J Pharmacogn. 2015; 2(10):484-493.

Yadav DK, Kumar S, Teli MK, Yadav R, Chaudhary S. Molecular targets for malarial chemotherapy: a review. Curr Top Med Chem. 2019; 19(10):861-873.

Saxena S, Durgam L, Guruprasad L. Multiple epharmacophore modelling pooled with high-throughput virtual screening, docking and molecular dynamics simulations to discover potential inhibitors of Plasmodium falciparum lactate dehydrogenase (pfLDH). J Biom Struc

Dynam. 2019; 37(7):1783-1799.

Vander Jagt DL, Hunsaker LA, Campos NM, Baack BR. Dlactate production in erythrocytes infected with Plasmodium falciparum. Mol Biochem Parasitol. 1990; 42(2): 277-284.

Waingeh VF, Groves AT, Eberle JA. Binding of QuinolineBased Inhibitors to Plasmodium falciparum Lactate Dehydrogenase: A Molecular Docking Study. Open J Biophys. 2013; 3(4):285-290.

Penna-Coutinho J, Cortopassi WA, Oliveira AA, Franca TCC, Krettli AU. Antimalarial activity of potential inhibitors of Plasmodium falciparum lactate dehydrogenase enzyme selected by docking studies. PLoS ONE. 2011; 6(7):e21237.

Omoniwa BP, Johnson TO, Soji-Omoniwa O, Gurumtet I, Manzah RA. In vitro antiplasmodial activity of aqueous extracts of Ochna schweinfurthiana leaf on Plasmodium falciparum. J Pharm Biores. 2017; 14(2):269-278.

Wande OM and Babatunde SB. In vitro screening of ten Combretaceae plants for antimalarial activities applying the inhibition of beta-hematin formation. Int J Biol Chem Sci. 2017; 11(6):2971–2981.

Tan FX, Shi SH, Zhong Y, Gong X, Wang YG. Phylogenetic relationships of Combretoideae (Combretaceae) inferred from plastid, nuclear gene and spacer sequences. J Plant Res. 2002; 115(6):475-481.

Dawe A, Pierre S, Tsala DE, Habtemariam S. Phytochemical constituents of Combretum Loefl. (Combretaceae). Pharm Crop. 2013; 4(1):38-59.

Gedson RM, Igor RP, Marcelo RD, Neyres ZT, Heloina SF, Jose MB, Analucia GS, Augusto LS, Josean FT, Leonia MB. Bioactivities of the genus Combretum (combretaceae): A Review. Molecules. 2012; 17(12):9142-9206.

Atindehou KK, Schmid C, Brun R, Koné MW, Traore D. Antitrypanosomal and antiplasmodial activity of medicinal plants from Côte d'Ivoire. J Ethnopharmacol. 2004; 90(2-3): 221–227.

Oluyemi WM, Samuel BB, Kaehlig H, Zehl M, Parapini S, D’Alessandro S, Taramelli D, Krenn L. Antiplasmodial activity of triterpenes isolated from the methanolic leaf extract of Combretum racemosum P. Beauv. J Ethnopharmacol. 2020; 247(1):112203

Oluyemi WM, Samuel BB, Kaehlig H, Taramelli D, Krenn L. Isolation of two homologous triterpenes with antimalarial activities from the leaf extract of Combretum zenkeri. Acta Pharm Sci. 2019; 57(3):21-30.

Olsson MH, Søndergaard CR, Rostkowski M, Jensen JH. PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions. J Chem Theory Comput. 2011; 7(2):525-537.

Iwaloye O, Elekofehinti OO, Momoh AI, Babatomiwa K, Ariyo EO. In silico molecular studies of natural compounds as possible anti-Alzheimer’s agents: ligand-based design. Netw Model Anal Health Inform Bioinform. 2020; 9(1): 54.

Kumar S, Bhardwaj TR, Prasad DN, Singh RK. Drug targets for resistant malaria: Historic to future perspectives. Biomed Pharmacother. 2018; 104(12):8-27.

Brown WM, Yowell CA, Hoard A, Vander Jagt TA, Hunsaker LA, Deck LM, Royer RE, Piper RC, Dame JB, Makler MT, Vander Jagt DL. Comparative structural analysis and kinetic properties of lactate dehydrogenases from the four species of human malarial parasites. Biochem.

; 43(20):6219-6229.

Kalani K, Agarwal J, Alam S, Khan F, Pal A, Srivastava SK. In Silico and In Vivo Anti-Malarial Studies of 18β Glycyrrhetinic Acid from Glycyrrhiza glabra. PLoS ONE 2013; 8(9):e74761.

Chen D, Oezguen N, Urvil P, Ferguson C, Dann SM, Savidge TC. Regulation of protein-ligand binding affinity by hydrogen bond pairing. Sci Adv. 2016; 2(3):e1501240.

Wu MY, Dai DQ, Yan H. PRL-Dock: protein-ligand docking based on hydrogen bond matching and probabilistic relaxation labeling. Proteins 2012; 80(9):2137-2153.

Ntie-Kang F. An in silico evaluation of the ADMET profile of the StreptomeDB database. SpringerPlus 2013; 2(1): 353.

DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs. J Health Econ. 2003; 22(2):151-185.

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug del. Rev. 1997; 23(1-3):3-25.

Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017; 7(1):42717.

Huang SM, Strong JM, Zhang L, Reynolds KS, Nallani S, Temple R, Chung S. New era in drug interaction evaluation: US Food and Drug Administration update on CYP enzymes, transporters, and the guidance process. J ClinPharm. 2008; 48(6):662-670.

Li X, Chen L, Cheng F, Wu Z, Bian H, Xu C, Li W, Liu G, Shen X, Tang Y. In Silico Prediction of Chemical Acute Oral Toxicity Using Multi-Classification Methods. J Chem Informat Model. 2014; 54(4):1061-1069.

Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018; 46(W1): W257-W263.

Erhirhie EO, Ihekwereme CP, Ilodigwe EE. Advances in acute toxicity testing: strengths, weaknesses and regulatory acceptance. Interdiscip Toxicol. 2018; 11(1):5-12.

Downloads

Published

2021-09-01

How to Cite

B. Samuel, B., M. Oluyemi, W., O. Johnson, T., & E. Adegboyega, A. (2021). High-Throughput Virtual Screening with Molecular Docking, Pharmacophore Modelling and ADME Prediction to Discover Potential Inhibitors of Plasmodium falciparum Lactate Dehydrogenase (PfLDH) from Compounds of Combretaceae Family: doi.org/10.26538/tjnpr/v5i9.22. Tropical Journal of Natural Product Research (TJNPR), 5(9), 1665–1672. Retrieved from https://tjnpr.org/index.php/home/article/view/422