Phytochemical Analysis, Antioxidant and Anti-Acetylcholinesterase Activities of Jordanian Pistacia palaestina Bios Leaves Extract

doi.org/10.26538/tjnpr/v5i9.15

Authors

  • Ahmed Al-Mustafa Biology Department, Faculty of Science, Mutah University, P.O. box 7, Karak, Jordan

Keywords:

Pistacia palaestina, anticholinesterase, antioxidant, phenolic compounds, HPLC, GC-MS

Abstract

Pistacia palaestina Boiss (P. palaestina) is a medicinal plant with multiple dietary and therapeutic applications. The purpose of this work was to investigate the phytochemical content, the antioxidant, and the anti-acetylcholinesterase (AChE) activities of the P. palaestina leaves’ methanol extract. The antioxidant activity of the extract was tested by 2,2 -azino-bis-3 thylbenzothiazoline-6-sulfonic acid (ABTS.+) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays, while the AChE inhibitory activity of the extract was determined according to Ellman’s assay. The composition of secondary phytochemical metabolites was established by HPLC-PDA and GC-MS analysis. P. palaestina leaves displayed strong ABTS•+ as well as DPPH radical scavenging ability with an IC50 value (6.86 µg/mL and 8.31 µg/mL) close to that of ascorbic acid (6.09 µg/mL and 6.96 µg/mL), respectively. For enzyme inhibition, the P. palaestina extract showed good activity against acetylcholinesterase in a dose-dependent manner with IC50 (57.67 μg/mL) ten folds higher than the standard inhibitor galantamine (IC50 = 5.64 μg/mL). The methanol extract displayed high phenolic (242.2 mgGAE/g extract) content. Similarly, thephytochemical profiling of the extract cautiously identified 19 different secondary metabolites, as accessed by HPLC and GC-MS analyses. Benzofenac methyl ester, 3,5-bis(1,1- dimethylethyl)- phenol, N-Dimethylaminomethyl-tertbutyl-isopropylphosphine, 14-methyl Pentadecanoic acid methyl ester, 13-Tetradece-11-yn-1-ol, and Tridecane were the main compounds detected. Based on the current findings on the antioxidant and anti-AChE activities of P. palaestina methanol leaves extract, this plant may be recommended as a source of bioactive plant compounds and presents new alternatives for use in the management of neurological diseases.

References

Sies H. Oxidative eustress: On constant alert for redox homeostasis. Redox Biol. 2021; 41: 101867.

Amel OH, Malek BH, Hichem BJ, Ali L, Mahjoub A, Boulbaba S. Antioxidant, and anti-acetylcholinesterase activities of extracts from Rapistrum rugosum in Tunisia. Asian Pac J Trop Dis. 2013; 3(5):367-374.

Walsh DM, Selkoe DJ. Deciphering the molecular basis of memory failure in Alzheimer's disease. Neuron. 2004; 44(1): 181-93.

Li Q, Tu Y, Zhu C, Luo W, Huang W, Liu W, Li Y. Cholinesterase, β-amyloid aggregation inhibitory and antioxidant capacities of Chinese medicinal plants. Ind Crops Prod. 2017; 108:512519.

Wilkinson DG, Francis PT, Schwam E, Payne-Parrish J. Cholinesterase inhibitors used in the treatment of Alzheimer's disease: the relationship between pharmacological effects and clinical efficacy. Drugs Aging. 2004; 21(7):453-478.

Muñoz-Torrero D. Acetylcholinesterase inhibitors as disease-modifying therapies for Alzheimer's disease. Curr Med Chem. 2008; 15(24):2433-2455.

Yemmen M, Landolsi A, Ben Hamida J, Mégraud F, Trabelsi Ayadi M. Antioxidant activities, anticancer activity, and polyphenolics profile, of leaf, fruit and stem extracts of Pistacia lentiscus from Tunisia. Cellular and Molecular Biology (Noisy-le-grand, France) 2017; 63(9):87-95

Al-Mustafa AH and Al-Thunibat OY. Antioxidant activity of some Jordanian medicinal plants used traditionally for treatment of diabetes. Pak J Biol Sci. 2008; 11(3):351-358.

Alzweiri M, Sarhan AA, Mansi K, Hudaib M, Aburjai T. Ethnopharmacological survey of medicinal herbs in Jordan, the Northern Badia region. J Ethnopharmacol. 2011; 137(1): 27-35.

Lev E and Amar Z. Ethnopharmacological survey of traditional drugs sold in the Kingdom of Jordan. J Ethnopharmacol. 2002; 82(2-3):131-145.

Rauf A, Patel S, Uddin G, Siddiqui BS, Ahmad B, Muhammad N, Mabkhot YN, Hadda TB. Phytochemical, ethnomedicinal uses and pharmacological profile of genus Pistacia. Biomed Pharmacother. 2017; 86:393-404.

Bouasla A, Bouasla I. Ethnobotanical survey of medicinal plants in northeastern of Algeria. Phytomed. 2017; 36: 68–81.

Scherrer AM, Motti R, Weckerle CS. Traditional plant use in the areas of Monte Vesole and Ascea, Cilento National Park (Campania, Southern Italy). J Ethnopharmacol. 2005; 97(1): 129-143

Labed-Zouad I, Ferhat M, Öztürk M, Abaza I, Nadeem S, Kabouche A, Kabouche Z. Essential Oils Composition, Anticholinesterase and Antioxidant Activities of Pistacia atlantica Desf. Rec Nat Prod. 2017; 11(4):411-415.

Benamar H, Marouf A, Bennaceur M. Phytochemical composition, antioxidant and acetylcholinesterase inhibitory activities of aqueous extract and fractions of Pistacia atlantica subsp. atlantica from Algeria. J Herbs Spices Med Plants. 2018; 24(3):229-244.

Dhouafli Z, Rigacci S, Leri M, Bucciantini M, Mahjoub B, Tounsi MS, Wannes WA, Stefani M, Hayouni EA. Screening for amyloid-β aggregation inhibitor and neuronal toxicity of eight Tunisian medicinal plants. Ind Crops Prod. 2018; 111: 823-833.

Benhammou N, Bekkara FA, Panovska TK. Antioxidant and antimicrobial activities of the Pistacia lentiscus and Pistacia atlantica extracts. Afr J Pharm Pharmacol. 2008; 2(2):22-8.

Ljubuncic P, Cogan U, Portnaya I, Azaizeh H, Said O, Bomzon A. Antioxidant activity and cytotoxicity of eight plants used in traditional Arab medicine in Israel. J. Ethnopharmacol. 2005; 99(1):43-47.

Khedir SB, Bardaa S, Chabchoub N, Moalla D, Sahnoun Z, Rebai T. The healing effect of Pistacia lentiscus fruit oil on laser burn. Pharm Biol. 2017; 55(1):1407-1414.

Ali-Shtayeh MS, Yaniv Z, Mahajna J. Ethnobotanical survey in the Palestinian area: a classification of the healing potential of medicinal plants. J Ethnopharmacol. 2000; 73(1-2):221-232.

Tawaha K, Alali FQ, Gharaibeh M, Mohammad M, ElElimat T. Antioxidant activity and total phenolic content of selected Jordanian plant species. Food Chem. 2007; 104(4): 1372-1378.

Singleton VL, Orthofer R, Lamuela-Raventós RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Meth Enzymol. 1999(1); 299: 152-178.

Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958; 181(4617):1199-1200.

Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, RiceEvans C. Antioxidant activity applying an improved ABTS•+ radical cation decolorization assay. Free Radic Biol Med. 1999; 26(9-10):1231-1237.

Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961; 7(2):88-95.

Al-Rimawi F, Abu-Lafi S, Abbadi J, Alamarneh A, Sawahreh R, Odeh I. Analysis of phenolic and flavonoids of wild Fphedra alata plant extracts by LC/PDA and LC/MS and their antioxidant activity. Afr J Tradit Complement Altern Med. 2017; 14(2):130-141.

Rababah TM, Banat F, Rababah A, Ereifej K, Yang W. Optimization of extraction conditions of total phenolics, antioxidant activities, and anthocyanin of oregano, thyme, terebinth, and pomegranate. J Food Sci. 2010; 75(7):C626-C632.

Hacıbekiroğlu I, Yılmaz PK, Haşimi N, Kılınç E, Tolan V, Kolak U. In vitro biological activities and fatty acid profiles of Pistacia terebinthus fruits and Pistacia khinjuk seeds. Nat Prod Res. 2015; 29(5):444-446.

Asghari B, Mafakheri S, Zarrabi M, Erdem S, Orhan I, Bahadori M. Therapeutic target enzymes inhibitory potential, antioxidant activity, and rosmarinic acid content of Echium amoenum. S Afr J Bot. 2019; 120: 191-197.

Elez Garofulić I, Kruk V, Martić A, Martić I, Zorić Z, Pedisić S, Dragović S, Dragović-Uzelac V. Evaluation of Polyphenolic Profile and Antioxidant Activity of Pistacia lentiscus L. Leaves and Fruit Extract Obtained by Optimized Microwave-Assisted Extraction. Foods. 2020; 9(11):1556.

Ben Ahmed Z, Yousfi M, Viaene J, Dejaegher B, Demeyer K, Heyden YV. Four Pistacia atlantica subspecies (atlantica, cabulica, kurdica and mutica): A review of their botany, ethnobotany, phytochemistry and pharmacology. J Ethnopharmacol. 2021; 265(2):113329.

Atmani D, Chaher N, Berboucha M, Ayouni, K, Lounis H, Boudaoud H, Debbache N, Atmani D. Antioxidant capacity and phenol content of selected Algerian medicinal plants, Food Chemistry. 2009; 112(2):303-309.

Achili I, Amrani A, Bensouici C, Gül F, Altun M, Demirtas I, Zama D, Benayache F, Benayache S. Chemical Constituents, Antioxidant, Anticholinesterase and Antiproliferative Effects of Algerian Pistacia atlantica Desf. Extracts. Recent Pat Food Nutr Agric. 2020; 11(3):249-256.

Mohammadi B, Maboud HE, Seyedi SM. Nutritional value and antioxidant properties of hull and kernel in Pistacia atlantica and Pistacia khinjuk fruits. J Food Sci Technol. 2019; 56(8):3571-3578.

Woidylo A, Oszmiaski J, Czemerys R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 2007; 105(3): 940-949.

Murray AP, Faraoni MB, Castro MJ, Alza NP, Cavallaro V. Natural AChE Inhibitors from Plants and their Contribution to Alzheimer’s Disease Therapy. Curr Neuropharmacol. 2013; 11(4):388-413.

Hartman RE, Shah A, Fagan AM, Schwetye KE, Parsadanian M. Pomegranate juice decreases amyloid load and improves behavior in a mouse model of Alzheimer’s disease. Neurobiol Dis. 2006; 24(3): 06-515

Zengin G, Sarikurkcu C, Uyar P, Aktumsek A, Uysal S, Kocak MS, Ceylan R. Crepis foetida L. subsp. rhoeadifolia (Bieb.) Celak. as a source of multifunctional agents: Cytotoxic and phytochemical evaluation. J. Funct. Foods. 2015; 17:698-708.

Okello EJ and Mather J. Comparative kinetics of acetyland butyryl-cholinesterase inhibition by green tea catechins relevance to the symptomatic treatment of Alzheimer’s disease. Nutr. 2020; 12(4):1090.

Oh MH, Houghton PJ, Whang WK, Cho JH. Screening of Korean herbal medicines used to improve cognitive function for anti-cholinesterase activity. Phytomed. 2004; 11(6): 544-548.

Sarris J. Herbal medicines in the treatment of psychiatric disorders: a systematic review. Phytother Res. 2007; 21(8): 703-716.

Corbett A, Williams G, Ballard C. Drug repositioning: an opportunity to develop novel treatments for Alzheimer’s disease. Pharm. 2013; 6(10):1304-1321.

Parveen S, Khalid A, Farooq A, Choudhary MI. Acetyl and butyrylcholinesterase-inhibiting triterpenoid alkaloids from Buxus papillosa. Phytochem. 2001; 58(6): 963–968.

Yan YX, Sun Y, Li ZR, Zhou L, Qiu MH. Chemistry and biological activities of Buxus alkaloids. Curr Bioact Comp. 2011; 7(1):47-64.

Ingkaninan K, Temkitthawon P, Chuenchom K, Yuyaem T, Thongnoi W. Screening for acetylcholinesterase inhibitory activity in plants used in Thai traditional rejuvenating and neurotonic remedies. J Ethnopharmacol. 2003(2-3); 89: 261–264.

Mukherjee PK, Kumar V, Mal M, Houghton PJ. Acetylcholinesterase inhibitors from plants. Phytomed. 2007; 14(4):289-300.

Parmar D, Sachdeva P, Kukkar M. Evaluation of protective role of Abutilon Indicum in Aluminium chloride induced Alzheimer’s disease in Rats. J Pharm Sci. 2017; 7(5): 314–321.

El Bishbishy MH, Gad HA, Aborehab NM. Chemometric discrimination of three Pistacia species via their metabolic profiling and their possible in vitro effects on memory functions. J Pharm Biomed Anal. 2020; 177(1):112840.

Jazayeri SB, Amanlou A, Ghanadian N, Pasalar P, Amanlou M. A preliminary investigation of anticholinesterase activity of some Iranian medicinal plants commonly used in traditional medicine. DARU J Pharm Sci. 2014; 22(1):17.

Downloads

Published

2021-09-01

How to Cite

Al-Mustafa, A. (2021). Phytochemical Analysis, Antioxidant and Anti-Acetylcholinesterase Activities of Jordanian Pistacia palaestina Bios Leaves Extract: doi.org/10.26538/tjnpr/v5i9.15. Tropical Journal of Natural Product Research (TJNPR), 5(9), 1619–1625. Retrieved from https://tjnpr.org/index.php/home/article/view/416