In Silico Evaluation of the Physicochemical, Pharmacokinetics, and Toxicity Profiles of Sesquiterpene Lactones of South African Leaf (Vernonia amygdalina Delile)

doi.org/10.26538/tjnpr/v5i10.21

Authors

  • Nerdy Nerdy Department of Pharmacy, Faculty of Pharmacy, Institut Kesehatan Deli Husada Deli Tua, Deli Tua Timur, Deli Tua, Deli Serdang, Sumatera Utara, Indonesia
  • Linda Margata Department of Pharmacy, Faculty of Pharmacy, Institut Kesehatan Deli Husada Deli Tua, Deli Tua Timur, Deli Tua, Deli Serdang, Sumatera Utara, Indonesia
  • Linta Meliala Department of Pharmacy, Faculty of Pharmacy, Institut Kesehatan Deli Husada Deli Tua, Deli Tua Timur, Deli Tua, Deli Serdang, Sumatera Utara, Indonesia
  • Jhan S. Purba Department of Pharmacy, Faculty of Pharmacy, Institut Kesehatan Deli Husada Deli Tua, Deli Tua Timur, Deli Tua, Deli Serdang, Sumatera Utara, Indonesia
  • Bunga M. Sembiring Department of Public Health, Faculty of Public Health, Institut Kesehatan Deli Husada Deli Tua, Deli Tua Timur, Deli Tua, Deli Serdang, Sumatera Utara,  Indonesia
  • Selamat Ginting Department of Public Health, Faculty of Public Health, Institut Kesehatan Deli Husada Deli Tua, Deli Tua Timur, Deli Tua, Deli Serdang, Sumatera Utara,  Indonesia
  • Tedy K. Bakri Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Syiah Kuala, Banda Aceh, Aceh, Indonesia

Keywords:

Vernonia amygdalina Delile, Sesquiterpene lactone, In silico, Physicochemical, Pharmacokinetics, Toxicity

Abstract

Cancer is a disease caused by malignant cell growth. Chemotherapeutic agents are still the primary option for cancer treatment. Various efforts to develop new treatment methods are needed for more effective cancer therapy. Cyclophosphamide is one of the essential agents used for treating cancers. The sesquiterpene lactone compounds in Vernonia amygdalina Delile, (South African leaf) contribute to its anticancer pharmacological effects in different cancers. This study aims to determine the pharmacokinetics and toxicity profiles of various sesquiterpene lactone compounds in the South African leaf. This research was initiated by a search for the physicochemical properties and Canonical Simplified Molecular Input Line Entry System (SMILES) code of each compound with the assistance of PubChem, followed by computational processing with the aid of the pkCSM and ProTox-II tools. This study involves a comparative analysis of the compounds' physicochemical properties, pharmacokinetics, toxicity profile and cyclophosphamide as the standard anticancer drug. The results showed that the physicochemical properties of the sesquiterpene lactone compounds in Vernonia amygdalina leaf had met Lipinski's rule of five conditions. The pharmacokinetics and toxicity profiles were similar or better than cyclophosphamide. Hydroxyvernolide has the best physicochemical, pharmacokinetics, and toxicity profile of the sesquiterpene lactones of the South African Vernonia amygdalina and cyclophosphamide.

References

Tjandrawinata RR, Setiawati A, Nofiarny D, Susanto LW, Setiawati E. Pharmacokinetic Equivalence Study of Nonsteroidal Anti-Inflammatory Drug Etoricoxib. Clin Pharmacol. 2018; 10(4):43-51.

McCarty LS, Borgert CJ, Burgoon LD. Evaluation of the Inherent Toxicity Concept in Environmental Toxicology and

Risk Assessment. Environ Toxicol Chem. 2020; 39(12):2351-2360.

Mohs RC and Greig NH. Drug Discovery and Development: Role of Basic Biological Research. Alzheimer's Dement. 2017; 3(11):651-657.

Andrade EL, Bento AF, Cavalli J, Oliveira SK, Schwanke RC, Siqueira JM, Freitas CS, Marcon R, Calixto JB. Non-Clinical

Studies in the Process of New Drug Development - Part II: Good Laboratory Practice, Metabolism, Pharmacokinetics, Safety and Dose Translation to Clinical Studies. Braz J Med Biol Res. 2016; 49(12):e5646.

Daley S and Cordell GA. Natural Products, the Fourth Industrial Revolution, and the Quintuple Helix. Nat ProdCommun. 2021; 16(3): 1-31.

Howard C, Johnson W, Pervin S, Izevbigie E. Recent perspectives on the anticancer properties of aqueous extracts of

Nigerian Vernonia amygdalina. Botanics. 2015; 5(11): 65-76.

Joseph J, Lim V, Rahman HS, Othman HH, Samad NA. AntiCancer Effects of Vernonia amygdalina: A Systematic Review. Trop J Pharm Res. 2020; 19(8):1775-1784.

Hasibuan PAZ, Harahap U, Sitorus P, Satria D. The Anticancer Activities of VernoniaamygdalinaDelile. Leaves on 4T1 Breast Cancer Cells through Phosphoinositide 3-Kinase (PI3K) Pathway. Heliyon. 2020; 6(7):e04449.

Abay SM, Lucantoni L, Dahiya N, Dori G, Dembo EG, Esposito F, Lupidi G, Ogboi S, Ouédraogo RK, Sinisi A,

Taglialatela‑Scafati O, Yerbanga RS, Bramucci M, Quassinti L, Ouédraogo JB, Christophides G and Habluetzel A. PlasmodiumTransmission Blocking Activities of Vernonia amygdalina Extracts and Isolated Compounds. Malar J. 2015; 14(7):288.

Tohme S, Simmons RL, Tsung A. Surgery for Cancer: A Trigger for Metastases. Cancer Res. 2017; 77(7):1548-1552.

Bukowski K, Kciuk M, Kontek R. Mechanisms of Multidrug Resistance in Cancer Chemotherapy. Int J Mol Sci. 2020;

(5):3233.

Falzone L, Salomone S, Libra M. Evolution of Cancer Pharmacological Treatments at the Turn of the Third

Millennium. Front Pharmacol. 2018; 9(11):1300.

Prasansuklab A, Brimson JM, Tencomnao T. Potential Thai Medicinal Plants for Neurodegenerative Diseases: A Review Focusing on the Anti-Glutamate Toxicity Effect. J Trad Compl Med. 2020; 10(3):301-308.

Benet LZ, Hosey CM, Ursu O, Oprea TI. BDDCS, the Rule of 5 and Drugability. Adv Drug Deliv Rev. 2016; 101(6):89-98.

Maliehe TS, Tsilo PH, Shandu JS. Computational Evaluation of ADMET Properties and Bioactive Score of Compounds from Encephalartosferox. Pharmacogn J. 2020; 12(6):1357-1362.

Xu R, Yuan Y, Qi J, Zhou J, Guo X, Zhang J, Zhan R. Elucidation of the Intestinal Absorption Mechanism of Loganin

in the Human Intestinal Caco-2 Cell Model. Evid-Based Compl Altern Med. 2018; 2018 (6):8340563.

Koziolek M, Alcaro S, Augustijns P, Basit AW, Grimm M, Hens B, Hoad CL, Jedamzik P, Madla CM, Maliepaard M, Marciani L, Maruca A, Parrott N, Pávek P, Porter CJH, Reppas C, van RietNales D, Rubbens J, Statelova M, Trevaskis NL, Valentováp K, Vertzoni M, Čepo DV, Corsetti M. The Mechanisms of Pharmacokinetic Food-Drug Interactions - A Perspective from the UNGAP Group. Eur J Pharm Sci. 2019; 134 (15):31-59.

Hardjono S, Widiandani T, Purwanto BT, Nasyanka AL. Molecular Docking of N-benzoyl-N'-(4-fluorophenyl) thiourea

Derivatives as Anticancer Drug Candidate and Their ADMET Prediction. Res J Pharm Technol. 2019; 12 (5):2160-2166.

Gonzalez D, Schmidt S, Derendorfa H. Importance of Relating Efficacy Measures to Unbound Drug Concentrations for AntiInfective Agents. Clin Microbiol Rev. 2013;26 (2):274-288.

Wala K, Szlasa W, Saczko J, Rudno-Rudzinska, J, Kulbacka J. Modulation of Blood-Brain Barrier Permeability by Activating Adenosine A2 Receptors in Oncological Treatment. Biomol. 2021;11(4):633.

Gao Z, Chen Y, Cai X, Xu R. Predict Drug Permeability to Blood-Brain-Barrier from Clinical Phenotypes: Drug Side

Effects and Drug Indications. Bioinformat. 2017;33 (6):901-908.

Krihariyani D, Wasito EB, Isnaeni I, Siswodihardjo S, Yuniarti WM, Kurniawan E. In Silico Study on Antibacterial Activity and Brazilein ADME of Sappan Wood (CaesalpiniaSappan L.) Against Escherichia coli (Strain K12). Sys Rev harm. 2020; 11(10): 290-296.

Carpenter TS, Kirshner DA, Lau EY, Wong SE, Nilmeier JP, Lightstone FC. A Method to Predict Blood-Brain Barrier

Permeability of Drug-Like Compounds Using Molecular Dynamics Simulations. Biophys J. 2014;107(8):630-641.

Stepnik K and Kukula-Koch W. In Silico Studies on Triterpenoid Saponins Permeation through the Blood-Brain Barrier Combined with Postmortem Research on the Brain Tissues of Mice Affected by Astragaloside IV Administration. Int J Mol Sci. 2020; 21(4): 2534.

Hadni H and Elhallaoui M. 3D-QSAR, Docking and ADMET Properties of Aurone Analogues as Antimalarial Agents.

Heliyon. 2020; 6(3): e03580.

Zanger UM and Schwab M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013; 138(1):103-141.

Chen J, Jiang S, Wang J, Renukuntla J, Sirimulla S, Chen J. A Comprehensive Review of Cytochrome P450 2E1for Xenobiotic Metabolism. Drug Metab Rev. 2019; 51(2):1-60.

Deodhar M, Rihani SBA, Arwood MJ, Darakjian L, Dow P, Turgeon J, Michaud V. Mechanisms of CYP450 Inhibition:

Understanding Drug-Drug Interactions Due to Mechanism-Based Inhibition in Clinical Practice. Pharmaceut. 2020; 12(1):846.

Zhang A and Tang W. Drug Metabolism in Drug Discovery and Development. Acta Pharm Sin B. 2018; 8(5):721-732.

Choi GW, Lee YB, Cho HY. Interpretation of Non-Clinical Data for Prediction of Human Pharmacokinetic Parameters: In VitroIn Vivo Extrapolation and Allometric Scaling. Pharmaceut. 2019; 11(4): 168.

Yin J and Wang J. Renal Drug Transporters and Their Significance in Drug-Drug Interactions. Acta Pharm Sin B. 2016;

(5):363-373.

Zhou S, Zeng S, Shu Y. Drug-Drug Interactions at Organic Cation Transporter 1. Front Pharmacol. 2021; 12(2):628705.

Smith CJ and Perfetti TA. Statistical Treatment of Cytotoxicity in Ames Bacterial Reverse Mutation Assays Can Provide

Additional Structure-Activity Relationship Information. Toxicol Res Appl. 2020; 4(3):1-5.

Honma M. An Assessment of Mutagenicity of Chemical Substances by (Quantitative) Structure-Activity Relationship.

Gene Environ. 2020. 42(7): 23.

dos Santos AF, de Almeida DRQ, Terra LF, Baptista MS, Labriola L. Photodynamic Therapy in Cancer Treatment - An

Update Review. J Cancer Metastasis Treat. 2019; 5(3):25.

Trapani D, Zagami P, Nicolò E, Pravettoni G, Curigliano G. Management of Cardiac Toxicity Induced by Chemotherapy. J Clin Med. 2020; 9(9): 2885.

Lee HM, Yu MS, Kazmi SR, Oh SY, Rhee KH, Bae MA, Lee BH, Shin DS, Oh KS, Ceong H, Lee D, Na D. Computational

Determination of hERG- Related Cardiotoxicity of Drug Candidates. Bioinfo. 2019: 20(10):250.

Gerussi A, Natalini A, Antonangeli F, Mancuso C, Agostinetto E, Barisani D, Rosa FD, Andrade R, Invernizzi P. ImmuneMediated Drug-Induced Liver Injury: Immunogenetics and Experimental Models. Int J Mol Sci. 2021; 2(4):4557.

Gadaleta D, Marzo M, Toropov A, Toropova A, Lavado GJ, Escher SE, Dorne JLCM, Benfenati E. Integrated In Silico Models for the Prediction of No-Observed-(Adverse)-Effect Levels and Lowest-Observed-(Adverse)-Effect Levels in Rats for Sub-chronic Repeated-Dose Toxicity. Chem Res Toxicol. 2021; 34(2):247-257.

Morris-Schaffer K and McCoy MJ. A Review of the LD50 and Its Current Role in Hazard Communication. ACS Chem Health Saf. 2021; 28(1):25-33.

Batiha GES, Beshbishy AM, Ikram M, Mulla ZS, El-Hack MEA, Taha AE, Algammal AM, Elewa YHA. The Pharmacological

Activity, Biochemical Properties, and Pharmacokinetics of the Major Natural Polyphenolic Flavonoid: Quercetin. Foods. 2020; 9(3):374.

Downloads

Published

2021-10-01

How to Cite

Nerdy, N., Margata, L., Meliala, L., S. Purba, J., M. Sembiring, B., Ginting, S., & K. Bakri, T. (2021). In Silico Evaluation of the Physicochemical, Pharmacokinetics, and Toxicity Profiles of Sesquiterpene Lactones of South African Leaf (Vernonia amygdalina Delile): doi.org/10.26538/tjnpr/v5i10.21. Tropical Journal of Natural Product Research (TJNPR), 5(10), 1835–1840. Retrieved from https://tjnpr.org/index.php/home/article/view/389