Phytochemical Constituents and Antimicrobial Activity of Elaeocarpus sphaericus Schum Seed Extract doi.org/10.26538/tjnpr/v5i10.13
Main Article Content
Abstract
The use of medicinal plants in health care services has tremendously increased. Medicinal plants contain bioactive compounds that are very important in biological activities and may possess antioxidant, anticancer, and antimicrobial properties. Therefore, this study was aimed at identifying the phytochemical constituents of Elaeocarpus sphaericus Schum (genitri) seed extract and determining its antibacterial activity. E. sphaericus seeds were obtained, dried, and prepared into powder form. The seed powder was extracted with methanol. Phytochemical analysis was conducted on the methanol seed extract using the Liquid Chromatography-Mass Spectrometry (LC-MS) technique. Antibacterial sensitivity testing was carried out with the agar disk diffusion method. The result of the phytochemical screening revealed that E. sphaericus seed extract contains 72 compounds which include dicarboxylic acid, aromatic acid, ester, glucose, coumarin, alkaloid, flavonoid, tannin, glycoside, steroid, terpenoid, quinone, and coumestan. Each phytochemical compound varies in composition, with caffeic acid (3.12%) being the highest. The antibacterial sensitivity testing of the 15 and 40% E. sphaericus seed extracts against E. coli indicated inhibition zone diameters of 7.25 and 7.75 mm, respectively, while values of 7.5 and 9 mm, respectively were recorded for L. cidophilus. Also, the antibacterial activity of the seed extract was found to be concentration-dependent. The findings of this study reveal that E. sphaericus seed extract contain several phytochemical compounds and has antibacterial activity against E. coli and L. acidophilus, thereby making it a potential antibacterial agent.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Kong JM, Goh NK, Chia LS, Chia TF. Recent advances in traditional plant drugs and orchids. Acta Pharmacol Sin. 2003; 24(1):7-21.
Yuan H, Ma Q, Ye L, Piao G. The traditional medicine and modern medicine from natural products. Molecules. 2016; 21(5):559.
Hossen MJ, Uddin MB, Uddin Ahmed SS, Yu ZL, Cho JY. Traditional Medicine/Plants for the Treatment of
Reproductive Disorders in Asia Nations. Pak Vet J. 2016;36(2):127-133.
Pan SY, Litscher G, Gao SH, Zhou SF, Yu ZL, Chen HQ, Zhang SF, Tang MK, Sun JN, Ko KM. Historical perspective of traditional indigenous medical practices: The current renaissance and conservation of herbal resources. Evidence-based Complement Altern Med. 2014;
(525340):1-20.
Vasanthi, HR, ShriShriMal N, Das DK. Phytochemicals from Plants to Combat Cardiovascular Disease. Curr Med Chem. 2012; 19(14):2242-2251.
Altemimi A, Lakhssassi N, Baharlouei A, Watson DG, Lightfoot DA. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants. 2017; 6(42):1-23.
Ekor M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol. 2014; 4:1-10.
Saxena M, Saxena J, Nema R, Singh D, Gupta A. Phytochemistry of medicinal plants. J Pharmacogn
Phytochem. 2013; 1(6):168-182.
Panth N, Paudel KR, Karki R. Phytochemical profile and biological activity of Juglans regia. J Integr Med. 2016;14(5):359-373.
Andriani Y, Ramli NM, Syamsumir DF, Kassim MNI, Jaafar J, Aziz NA, Marlina L, Musa NS, Mohamad H. Phytochemical analysis, antioxidant, antibacterial and cytotoxicity properties of keys and cores part of Pandanus tectorius fruits. Arab J Chem. 2019; 12(8):3555-3564.
Kanjanasirirat P, Suksatu A, Manopwisedjaroen S, Munyoo B, Tuchinda P, Jearawuttanakul K, et al. High-content screening of Thai medicinal plants reveals Boesenbergia rotunda extract and its component Panduratin A as anti-SARS-CoV-2 agents. Sci Rep. 2020; 10(1):1-12. 12. Ayaz M, Ullah F, Sadiq A, Ullah F, Ovais M, Ahmed J,
Devkota HP. Synergistic interactions of phytochemicals with antimicrobial agents: Potential strategy to counteract drug resistance. Chem Biol Interact. 2019; 308(May):294-
Omojate GC, Enwa FO, Jewo AO, Eze CO. Mechanisms of Antimicrobial Actions of Phytochemicals against Enteric Pathogens. J Pharm Chem Biol Sci. 2014; 2(2):77-85.
Azih I, Ijezie M, Ugariogu SN, Akalezi CO. Antibacterial activity and identification of metabolites from the semipurified fraction of Chrysophyllum albidum leaf (African
star apple). Trop J Nat Prod Res. 2020; 4(7):262-269.
Rohandi A, Gunawan. Distribution and the potential growth of ganitri (Elaeocarpus ganitrus Roxb ) in Central Java. Jurnal Ilmu Kehutanan. 2014; 8(1):25-33.
Nain J, Garg K, Dhahiya S. Analgesic and antiinflammatory activity of Elaeocarpus sphaericus leaf extract. Int J Pharm Pharm Sci. 2012; 4(SUPPL.1):379-381.
Hule AK, Shah AS, Gambhire MN, Juvekar AR. An evaluation of the antidiabetic effects of Elaeocarpus
ganitrus in experimental animals. Indian J Pharmacol. 2011; 43(1):56-59.
Joshi S, Gupta P, Kumar N, Rai N, Gautam P, Thapliyal A. A comprehensive report on therapeutic potential of Elaeocarpus ganitrus Roxb.(Rudraksha). Environ Conserv J. 2012; 13(3):147-150.
Ogundele AV, Das AM. Chemical Constituents from the Leaves of Elaeocarpus floribundus Ayorinde. Nat Prod Res. 2021; 35(3):517-520.
Tripathy S, Mida A, Swain SR. Phytochemical Screening and Thin Layer Chromatographic Studies of Elaeocarpus ganitrus Seed the Magical Electromagnetic Bead (Rudraksha). Int J Pharm Biol Sci. 2016; 6(3):16-24.
Dalei J, Sahoo D. Evaluation of antimicrobial activity and phytochemical screening of epicarp and endocarp parts of Elaeocarpus ganitrus. Int J Pharm Bio Sci. 2016; 7(2):265-9.
Jain PK, Sharma P, Joshi SC. Antioxidant and lipid lowering effects of elaeocarpus ganitrus in cholesterol fed rabbits. Int J Pharmaceut Sci and Res. 2018; 9(2):526-534.
Bhatt BD, Dahal P. Antioxidant and Antimicrobial Efficacy of Various Solvent Extracts of Seed of Rudrakshya (Elaeocarpus ganitrus) from Ilam District of Nepal. J Nepal
Chem Soc. 2019; 40:11-18.
Poolman JT, Wacker M. Extraintestinal pathogenic
Escherichia coli, a common human pathogen: challenges for vaccine development and progress in the field. J Infect Dis. 2016; 213(1):6-13.
Lin CK, Tsai HC, Lin PP, Tsen HY, Tsai CC. Lactobacillus acidophilus LAP5 able to inhibit the Salmonella
choleraesuis invasion to the human Caco-2 epithelial cell. Anaerobe. 2008; 14(5):251-255.
Wu Z, Yang K, Zhang A, Chang W, Zheng A, Chen Z, Cai H, Liu G. Effects of Lactobacillus acidophilus on the
growth performance, immune response, and intestinal barrier function of broiler chickens challenged with Escherichia coli O157. Poult Sci. 2021; 100(9):101323.
Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal. 2016; 6(2):71-79.
Souri D, Salimi N, Ghabooli M. Hydrothermal fabrication of pure ZnSe nanocrystals at different microwave irradiation times and their disc-diffusion antibacterial
potential against Gram negative bacteria: Bio-optical advantages. Inorg Chem Commun. 2021; 123:108345.
Dwivedi P, Narvi SS, Tewari RP. Phytofabrication characterization and comparative analysis of Ag
nanoparticles by diverse biochemicals from Elaeocarpus
ganitrus Roxb., Terminalia arjuna Roxb., Pseudotsuga menzietii, Prosopis spicigera, Ficus religiosa, Ocimum sanctum, Curcuma longa. Ind Crops Prod. 2014; 54:22-31. 30.
Wilapangga A and Syaputra S. Antibacterial analysis of agar disc method and toxicity test using BSLT (Brine Shrimp Lethality Test) from methanol extract of Bay leaf (Eugenia polyantha). Indones J Biotechnol Biodivers. 2018;2(2):50-56.
Nurfitriani R, Krishanti N putu RA, Akhdiya A, Wahyudi AT. Filospheric bacteria screening produce anti
Xanthomonas oryzae bioactive compounds pv. oryzae causes bacterial leaf blight in rice. J Sumberd Hayati. 2016;2(1):19-24.
Hamzah A. In Vitro Analysis of Dragon Scale Leaves (Drymoglossum pilosellaoides) Antibacterial Activity
Against Vibrio harveyi and Vibrio parahaemolyticus Bacteria. J Aquac Fish Heal. 2019; 8(2):86-91.
Pouvova D, Kokoskova B, Pavela R, Rysanek P. Effectivity of plant essential oils against Clavibacter michiganensis, in vitro. Zemdirbyste. 2008; 95(3):440-446.
Salem MZM, Ali HM, El-Shanhorey NA, Abdel-Megeed A. Evaluation of extracts and essential oil from Callistemon viminalis leaves: Antibacterial and antioxidant activities, total phenolic and flavonoid contents. Asian Pac J Trop
Med. 2013; 6(10):785-791.
Tagousop CN, Tamokou J-D, Ekom SE, Ngnokam D, Voutquenne-Nazabadioko L. Antimicrobial activities of flavonoid glycosides from Graptophyllum grandulosum and their mechanism of antibacterial action. BMC Complement Altern Med. 2018; 18(1):1-10.
Banso A and Adeyemo SO. Evaluation of antibacterial properties of tannins isolated from Dichrostachys cinerea. African J Biotechnol. 2007; 6(15):1785-1787.
Doss A, Mubarack HM, Dhanabalan R. Antibacterial activity of tannins from the leaves of Solanum trilobatum Linn. Indian J Sci Technol. 2009; 2(2):41-43.
Mailoa MN, Mahendradatta M, Laga A, Djide N. Antimicrobial Activities Of Tannins Extract From Guava Leaves (Psidium Guajava L) On Pathogens Microbial. Int J Sci Technol Res. 2014; 3(1):236-241.
Liu M, Yang K, Wang J, Zhang J, Qi Y, Wei X, Fan M. Young astringent persimmon tannin inhibits methicillin-resistant Staphylococcus aureus isolated from pork. LWT.
; 100(July 2018):48-55.
Javed B, Nawaz K, Munazir M. Phytochemical Analysis and Antibacterial Activity of Tannins Extracted from Salix alba L. Against Different Gram-Positive and Gram-Negative Bacterial Strains. Iran J Sci Technol Trans A Sci. 2020; 44(5):1303-1314.
Mandal P, Babu SPS, Mandal NC. Antimicrobial activity of saponins from Acacia auriculiformis. Fitoterapia. 2005; 76(5):462-465.
Khan MI, Ahhmed A, Shin JH, Baek JS, Kim MY, Kim JD. Green Tea Seed Isolated Saponins Exerts Antibacterial Effects against Various Strains of Gram Positive and Gram
Negative Bacteria, a Comprehensive Study in vitro and in vivo. Evidence-based Complement Altern Med. 2018; 2018(3486106):1-12.
Mabhiza D, Chitemerere T, Mukanganyama S. Antibacterial Properties of Alkaloid Extracts from
Callistemon citrinus and Vernonia adoensis against Staphylococcus aureus and Pseudomonas aeruginosa. Int J Med Chem. 2016; 2016(6304163):1-7.
Avci FG, Sayar NA, Sariyar Akbulut B. An OMIC approach to elaborate the antibacterial mechanisms of
different alkaloids. Phytochemistry. 2018; 149:123-131.
Jain A, Parihar DK. Antibacterial, biofilm dispersal and antibiofilm potential of alkaloids and flavonoids of Curcuma. Biocatal Agric Biotechnol. 2018; 16:677-682.
Zhou LN, Ge XL, Dong TT, Gao HY, Sun BH. Antibacterial steroidal alkaloids from Holarrhena
antidysenteriaca. Chin J Nat Med. 2017; 15(7):540-545.
Hernández NE, Tereschuk ML, Abdala LR. Antimicrobial activity of flavonoids in medicinal plants from Tafi del Valle (Tucuman, Argentina). J Ethnopharmacol. 2000; 73(1–2):317-322.
Mamtha B, Kavitha K, Srinivasan KK, Shivananda PG. An in vitro study of the effect of Centella asiatica [Indian pennywort] on enteric pathogens. Indian J Pharmacol. 2004;
(1):41-42.
Mujeeb F, Bajpai P, Pathak N. Phytochemical evaluation, antimicrobial activity, and determination of bioactive
components from leaves of aegle marmelos. Biomed Res
Int. 2014; 2014(497606):1-11.
Ali M, Yahaya A, Zage A, Yusuf Z. In vitro Antibacterial Activity and Phytochemical Screening of Psidium guajava on Some Enteric Bacterial Isolates of Public Health Importance. J Adv Med Pharm Sci. 2017; 12(3):1-7.
Kline KA, Lewis AL. Gram-Positive Uropathogens, Polymicrobial Urinary Tract Infection, and the Emerging
Microbiota of the Urinary Tract. Microbiol Spectr. 2016; 4(2):139-148.
Urmann K, Arshavsky-Graham S, Walter JG, Scheper T, Segal E. Whole-cell detection of live: Lactobacillus
acidophilus on aptamer-decorated porous silicon biosensors. Analyst. 2016; 141(18):5432-5440.
Lingga AR, Pato U, Rossi E. Antibacterial test of kecombrang (Nicolaia speciosa horan) stem extract against Staphylococcus aureus and Escherichia coli. JOM Faperta. 2016; 3(1):1-15