The Beneficial Effects of Stingless Bee Kelulut Honey Against Pseudomonas aeruginosa and Streptococcus pyogenes Planktonic and Biofilm doi.org/10.26538/tjnpr/v5i10.15
Main Article Content
Abstract
Kelulut honey (KH) is produced by the stingless bees from Trigona species and has strong antibacterial activity and is useful medically and therapeutically. The purpose of this study was o investigate the antibacterial and antibiofilm activities of KH against Pseudomonas aeruginosa and Streptococcus pyogenes. Biofilms were cultivated in microtiter plates with and without a range of concentrations of KH, and effects on biofilm were monitored by optical density (at 570 nm), biomass (by staining with crystal violet), metabolic activity (using an sterase assay) and viability (by determining total cell counts). Structural effects on planktonic and established biofilms were examined by scanning electron microscopy (SEM). KH was found to disrupt microcolony formation in both bacteria at sublethal concentration of KH. The lowestconcentration of KH found to prevent biofilm formation was 19% (w/v), whereas on average, 35.7% (w/v) of KH was required to inhibit established biofilms. Susceptibility was not differed with length of biofilm establishment between 24 and 72 hours. SEM analysis revealed marked changes in the bacterial cell morphology for both bacteria following treatment with KH. Extensive structural changes and loss of biofilm structure were seen in the sample after exposure to KH using scanning electron microscopy. Using a range of methods to evaluate planktonic and biofilm integrity, the results indicate that KH inhibits both bacteria planktonic and biofilm in vitro.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Singh S, Singh SK, Chowdhury I, Singh R. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol J. 2017; 11(3):53-59.
Dang H and Lovell CR. Microbial surface colonization and biofilm development in marine environments. Microbiol Mol Biol Rev. 2016; 80(1):91-138.
Nie D, Hu Y, Chen Z, Li M, Hou Z, Luo X, Mao X, Xue X. Outer membrane protein A (OmpA) as a potential therapeutic target for Acinetobacter baumannii infection. J
Biomed Sci. 2020; 27(1):1-8.
Bjarnsholt T, Buhlin K, Dufrêne YF, Gomelsky M, Moroni A, Ramstedt M, Rumbaugh KP, Schulte T, Sun L, Åkerlund B, Römling U. Biofilm formation–what we can learn from recent developments. J Intern Med. 2018; 284(5):332-345.
Percival S. Importance of biofilm formation in surgical infection. Br J Surg. 2017;104(2):85-94.
Tarawneh O, Alwahsh W, Abul-Futouh H, Al-Samad LA, Hamadneh L, Abu Mahfouz H, Fadhil Abed A.
Determination of Antimicrobial and Antibiofilm Activity of Combined LVX and AMP Impregnated in p (HEMA) Hydrogel. Appl Sci. 2021 Jan;11(18):8345-8352.
Al-Bakri AG and Mahmoud NN. Photothermal-induced antibacterial activity of gold nanorods loaded into polymeric hydrogel against pseudomonas aeruginosa biofilm. Molecules. 2019;24(14):1-19.
Huwaitat R, Coulter SM, Porter SL, Pentlavalli S, Laverty G. Antibacterial and antibiofilm efficacy of synthetic polymyxin‐mimetic lipopeptides. Peptide Sci. 2021;1131):1-11.
Frieri M, Kumar K, Boutin A. Antibiotic resistance. J Infect Pub Health. 2017; 10(4):369-378.
Tarawneh KA, Al‐Tawarah NM, Abdel‐Ghani AH, Al‐Majali AM, Khleifat KM. Characterization of verotoxigenic Escherichia coli (VTEC) isolates from faeces of small ruminants and environmental samples in Southern Jordan. J Basic Microbiol. 2009; 49(3): 307-3015.
Johnston M, McBride M, Dahiya D, Owusu-Apenten R,Nigam PS. Antibacterial activity of Manuka honey and its components: An overview. AIMS Microbiol. 2018; 4(4):655-663.
Combarros-Fuertes P, Fresno JM, Estevinho MM, SousaPimenta M, Tornadijo ME, Estevinho LM. Honey: Another alternative in the fight against antibiotic-resistant bacteria. Antibiotics. 2020; 9(11):774-782.
Althunibat OY, Qaralleh H, Al-Dalin SY, Abboud M, Khleifat K, Majali IS, Aldal'in HK, Rayyan WA, Jaafraa A. Effect of thymol and carvacrol, the major components of Thymus capitatus on the growth of Pseudomonas aeruginosa. J Pure Appl Microbiol. 2016; 10(1):367-374.
Rashid MR, Nor Aripin KN, Syed Mohideen FB, Baharom N, Omar K, Md Taujuddin NM, Mohd Yusof HH, Addnan FH. The effect of kelulut honey on fasting blood glucose and metabolic parameters in patients with impaired fasting glucose. J Nutr Metab. 2019; 5(3):1-8
Al-Hatamleh MA, Boer JC, Wilson KL, Plebanski M, Mohamud R, Mustafa MZ. Antioxidant-based medicinal properties of stingless bee products: recent progress and future directions. Biomolecules. 2020; 10(6):923-930.
Zulkhairi Amin FA, Sabri S, Mohammad SM, Ismail M, Chan KW, Ismail N, Norhaizan ME, Zawawi N.
Therapeutic properties of stingless bee honey in comparson with European bee honey. Adv Pharmacol Sci. 2018; 7(6):125-134.
Mohd-Aspar MAS, Edros RZ, Hamzah NA. Antibacterial Properties of Kelulut, Tualang and Acacia Honey against Wound-Infecting Bacteria. Pertanika J Trop Agric Sci. 2019; 42(4):8-15.
Al-Kafaween MA, Hilmi ABM, Khan RS, Bouacha M, Amonov M. Effect of Trigona honey on Escherichia colicell culture growth: In vitro study. J Apither. 2019; 5(2):7-12.
Omar S, Mat-Kamir Nf, Sanny M. Antibacterial activity of Malaysian produced stingless-bee honey on wound pathogens. J Sustain Sci Manag. 2019; 14(4):67-79.
Al-kafaween MA, Hilmi ABM, Al-Jamal HAN, Elsahoryi NA, Jaffar N, Zahri MK. Pseudomonas aeruginosa andStreptococcus pyogenes Exposed to Malaysian Trigona Honey in vitro Demonstrated Downregulation of Virulence Factor. Iran J Biotechnol. 2020; 18(4):115-123.
Khleifat KM, Abboud MM, Al-Mustafa AH, Al-Sharafa KY. Effects of carbon source and Vitreoscilla hemoglobin (VHb) on the production of β-galactosidase in Enterobacter aerogenes. Curr Microbiol. 2006; 53(4):277-281.
Maddocks SE, Lopez MS, Rowlands RS, Cooper RA. Manuka honey inhibits the development of Streptococcus pyogenes biofilms and causes reduced expression of two fibronectin binding proteins. Microbiol. 2012; 158(3):781- 790.
AL-Kafaween MA, Khan RS, Hilmi ABM, Ariff TM. Characterization of biofilm formation by Escherichia coli: An in vitro study. J Appl Biol Biotechnol. 2019; 7(3):9-77.
Lu J, Cokcetin NN, Burke CM, Turnbull L, Liu M, Carter DA, Whitchurch CB, Harry EJ. Honey can inhibit and eliminate biofilms produced by Pseudomonas aeruginosa. Sci Rep. 2019; 9(1):1-13.
Piotrowski M, Karpiński P, Pituch H, Van Belkum A, Obuch-Woszczatyński P. Antimicrobial effects of Manuka honey on in vitro biofilm formation by Clostridium difficile.Eur J Clin Microbiol Infect Dis. 2017; 36(9):1661-4.
Kot B, Sytykiewicz H, Sprawka I, Witeska M. Effect of manuka honey on biofilm-associated genes expression during methicillin-resistant Staphylococcus aureus biofilm formation. Sci Rep. 2020;10(1):1-12.
Liu MY, Cokcetin NN, Lu J, Turnbull L, Carter DA, Whitchurch CB, Harry EJ. Rifampicin-manuka honey
combinations are superior to other antibiotic-manuka honey combinations in eradicating Staphylococcus aureus biofilms. Front Microbiol. 2018; 8(4):1-12.
Horniackova M, Bucekova M, Valachova I, Majtan J. Effect of gamma radiation on the antibacterial and antibiofilm activity of honeydew honey. Eur Food Res Technol. 2017; 243(1):81-88.
Peeters E, Nelis HJ, Coenye T. Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J Microbiol Methods. 2008; 72(2):157-165.
Al-kafaween MA, Hilmi ABM, Al-Jamal HAN, Jaffar N, Al-Sayyed H, Zahri MK. Effects of Selected Malaysian Kelulut Honey on Biofilm Formation and the Gene Expression Profile of Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli. Jordan J Pharm Sci. 2021; 14(1):1-18.
Al-kafaween MA, Hilmi ABM, Jaffar N, Al-Jamal HAN, Zahri MK, Jibril FI. Antibacterial and Antibiofilm activities of Malaysian Trigona honey against Pseudomonas aeruginosa ATCC 10145 and Streptococcus pyogenesATCC 19615. Jordan J Biol Sci. 2020; 13(1):69-76.
Fernandes L, Oliveira A, Henriques M, Rodrigues ME. Honey as a Strategy to Fight Candida tropicalis in MixedBiofilms with Pseudomonas aeruginosa. Antibiotics. 2020; 9(2):43-51.
Ng WJ, Chan YJ, Lau ZK, Lye PY, Ee KY. Antioxidant properties and inhibitory effects of trigona honey against Staphylococcus aureus planktonic and biofilm cultures. Int J. 2017; 12(37):28-33.
Emineke S, Cooper AJ, Fouch S, Birch BR, Lwaleed BA. Diluted honey inhibits biofilm formation: potential application in urinary catheter management. J Clin Pathol. 2017; 70(2):140-144.
Wijesundara NM and Rupasinghe H. Bactericidal and antibiofilm activity of ethanol extracts derived from selected medicinal plants against Streptococcus pyogenes. Molecules. 2019; 24(6):1165-1172.
Al-kafaween MA, Mohd Hilmi AB, Jaffar N, Nagi AlJamal HA, Zahri MK, Amonov M, Mabrouka , Elsahoryi NA. Effects of Trigona honey on the Gene Expression Profile of Pseudomonas aeruginosa ATCC 10145 and Streptococcus pyogenes ATCC 19615. Jordan J Biol Sci. 2020; 13(2):133-138.
3Ommen P, Zobek N, Meyer RL. Quantification of biofilm biomass by staining: Non-toxic safranin can replace the popular crystal violet. J Microbiol Methods. 2017; 1(4):87-99.
Xu Z, Liang Y, Lin S, Chen D, Li B, Li L, Deng Y. Crystal violet and XTT assays on Staphylococcus aureus biofilm quantification. Curr Microbiol. 2016; 73(4):474-482.
Cooper R, Jenkins L, Hooper S. Inhibition of biofilms of Pseudomonas aeruginosa by Medihoney in vitro. J Wound Care. 2014; 23(3):93-104.
Stepanović S, Vuković D, Dakić I, Savić B, Švabić-Vlahović M. A modified microtiter-plate test for
quantification of staphylococcal biofilm formation. Microbiol Methods. 2000; 40(2):175-179.
Cooper RA, Halas E, Molan PC. The efficacy of honey in inhibiting strains of Pseudomonas aeruginosa from infected burns. J Burn Care Res. 2002; 23(6):366-370.
Garedew A, Schmolz E, Lamprecht I. The antimicrobial activity of honey of the stingless bee Trigona spp. J ApicSci. 2003; 47(1):37-49.
Andualem B. Combined antibacterial activity of stingless bee (Apis mellipodae) honey and garlic (Allium sativum) extracts against standard and clinical pathogenic bacteria. Asian Pac J Trop Biomed. 2013; 3(9):725-731.
Kwakman PH and Zaat SA. Antibacterial components of honey. IUBMB life. 2012; 64(1):48-55.
Khleifat K, Abboud M, Al-Shamayleh W, Jiries A, Tarawneh K. Effect of chlorination treatment on ram negative bacterial composition of recycled wastewater. Pak J Biol Sci. 2006; 9(1):660-668.
Al-Asoufi A, Khlaifat A, Tarawneh A, Alsharafa K, AlLimoun M, Khleifat K. Bacterial Quality of Urinary Tract Infections in Diabetic and Non Diabetics of the Population of Ma'an Province, Jordan. Pak J Biol Sci. 2017; 20(4):179-188.
Henriques A, Jenkins R, Burton N, Cooper R. The effect of manuka honey on the structure of Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis. 2011; 30(2):167-171.
Al-kafaween MA, Hilmi ABM, Jaffar N, Al-Jamal HAN, Zahri MK, Jibril FI. Antibacterial and Antibiofilm activities of Malaysian Trigona honey against Pseudomonas aeruginosa ATCC 10145 and Streptococcus pyogenesATCC 19615. Jordan J Biol Sci. 2020; 13(1):69-76.
Al-kafaween MA, HANA-J, Al-Jamal HAN, Hilmi ABM, Nour AE, Norzawani J, Mohd KZ. Antibacterial properties of selected Malaysian Tualang honey against Pseudomonas aeruginosa and Streptococcus pyogenes. Iran J Microbiol. 2020; 12(6):565-576.
Al-kafaween MA, Hilmi ABM, Al-Jamal HAN, Rania MG, Nour AE, Al-Sayyed H. Potential Antibacterial Activity Of Yemeni Sidr Honey Against Pseudomonas aeruginosa andStreptococcus pyogenes. Anti-Infect Agents. 2021; 19(2): 1-15.
Zainol MI, Yusoff KM, Yusof MYM. Antibacterial activity of selected Malaysian honey. BMC Compl Altern Med. 2013; 13(1):1-10.