Isolation of Apigenin Derivatives from the Leaves of Chorisia speciosa, Cordia dichotoma, Mentha piperita and Roots of Pluchea lanceolata doi.org/10.26538/tjnpr/v1i6.4

Main Article Content

Shahnaz Sultana
Mohammed Ali
Iram Rais

Abstract

Apigenin (4′,5,7-trihydroxyflavone) is a plant-derived skin cancer chemopreventive flavonoid that has anti-allergic, anti-depressant, anti-inflammatory, antimetastatic, antioxidant and anti-cancer properties. Our study was planned to isolate the apigenin derivatives from the leaves of Chorisia speciosa A. St. Hil.(Bombacaceae, Malvaceae), Cordia dichotoma G. Forst. (Boraginaceae) and Mentha piperita L. (Lamiaceae) and the roots of Pluchea lanceolata (DC.) C. B. Clarke (Asteraceae). The air-dried plant materials were exhaustively extracted with methanol in a Soxhlet apparatus. The concentrated methanol extracts were adsorbed on silica gel (60-120 mesh) for the preparation of slurries. The dried slurries were chromatographed over silica gel columns individually. The columns were eluted with petroleum ether, chloroform and methanol, successively, in order of increasing polarity to isolate the apigenin derivatives. Phytochemical investigation of the methanol extract of the leaves of C. speciosa afforded β-sitosterol 3-β-Lglucopyranoside (1) and apigenin 4′-O-α-L-glucopyranosyl-(6′′→1′′′)-α-L-rhamnopyranoside (2). Column chromatography of the methanol extract of the leaves of C. dichotoma gave α-L-arabinose (3), β-D-arabinose (4) and acacetin-7-O-β-D-glucopyranosyl-(6a→1b)-O-β-D-glucopyranosyl-
(6b→1c)-O-β-D-glucopyranosyl-2c-linolenate (5). The methanol extract of the leaves of M. piperita on subjection to silica gel column furnished 5-hydroxy-6, 7, 3′, 4′-tetramethoxy-8-(1′′- gerananyl)-flavone or 8-(1′′-gerananyl)-5-demethylsinensetin (6) and 3′,4′-dihydroxy-β-phenylethyl caffeate-4-(3′′′-menthyl)-4′-β-D-glucopyranoside or 4-(3′′-menthyl) teucrol 4′-O-β-Dglucoside, 7). The chemical constituents isolated from the methanol extract of the roots of P. lanceolata included n-tridecyl stearate (8), n-nonadecanol (9) and 8-isobutyl apigenin (10). Apigenin derivatives were isolated from the investigated medicinal plants. Their structures were
established on the basis of spectral data analysis and chemical reactions.

Downloads

Download data is not yet available.

Article Details

How to Cite
Sultana, S., Ali, M., & Rais, I. (2017). Isolation of Apigenin Derivatives from the Leaves of Chorisia speciosa, Cordia dichotoma, Mentha piperita and Roots of Pluchea lanceolata: doi.org/10.26538/tjnpr/v1i6.4. Tropical Journal of Natural Product Research (TJNPR), 1(6), 244-250. https://tjnpr.org/index.php/home/article/view/372
Section
Articles

How to Cite

Sultana, S., Ali, M., & Rais, I. (2017). Isolation of Apigenin Derivatives from the Leaves of Chorisia speciosa, Cordia dichotoma, Mentha piperita and Roots of Pluchea lanceolata: doi.org/10.26538/tjnpr/v1i6.4. Tropical Journal of Natural Product Research (TJNPR), 1(6), 244-250. https://tjnpr.org/index.php/home/article/view/372

References

Svehlikova V, Bennett RN, Mellon FA, Needs PW, Piacente S, Kroon PA, Bao Y. Isolation, identification and stability of acylated derivatives of apigenin 7-O-glucoside from chamomile (Chamomilla recutita [L.] Rauschert). Phytochem. 2004; 65:2323–2332.

Shukla S., Gupta S. Apigenin: A Promising Molecule for Cancer Prevention. Pharm Res. 2010; 27(6):962 – 978.

Venigalla M, Gyengesi E, Münch G. Curcumin and apigenin –novel and promosing therapeutics against chronic neuroinflammation in Alzhheimer’s disease. Neural Regeneration Res. 2015; 10 (8):1181–1185.

Khan A, Asadsaeed M, Chaudhary MA, Ahmad Q, Ansari F. Antimicrobial, anti-inflammatory and antipyretic activity of

Chorisia speciosa leaves. (Bombacaceae). Int J Biol PharmAllied Sci. 2015; 4(12):6826-6838.

Refaat J, Samy MN, Desoukey SY, Ramadan MA, Sugimoto S, Matsunami K, Kame MS. Chemical constituents from Chorisia chodatii flowers and their biological activities. Med Chem Res. 2015; 24(7):2939-2949.

Jamkhande PG, Barde SR, Patwekar SL, Tidke PS. Plant profile, phytochemistry and pharmacology of Cordia dichotoma (Indian cherry): A review. Asian Pac J Trop Biomed. 2013; 3(12):1009–1012.

Basu NG, Ghosal PK, Thakur S. Structural studies on a polysaccharide fraction from the fruits of Cordia dichotoma Forst. Carbohydr Res. 1984; 131:149–155.

Siddiqui BS, Perwaiz S, Begum S, Ali ST. Three new constituents, latifolinal, latifolidin and cordicinol from the fruits and leaves of Cordia latifolia. Nat Prod Res. 2010; 24 (2): 160 –166.

Siddiqui BS, Perwaiz S, Begum S. Studies on the chemical constituents of the fruits of Cordia latifolia. Nat Prod Res. 2006;

(2):131 – 137.

Ragasa CY, Virgilio Ebajo V, De Los Reyes MD, Mandia EH, Tan CS, Brkljača R, Urban S. Chemical constituents of Cordia dichotoma G. Forst. J Appl Pharm Sci. 2015; 5(2):16-21.

Srivastava SK, Srivastava SD. Taxifollin 3,5-dirhamnoside from the seeds of Cordia dichotoma. Phytochem. 1979; 18: 205-

Tian S, Liu F, Zhang X, Upur H. Phytochemical composition and antioxidant capacity of Cordia dichotoma seeds. Pak J

Pharm Sci. 2014; 27(5):1123-1129.

Shah PP, Mello PMD. A review of medicinal uses and pharmacological effects of Mentha piperita. Nat Prod

Radiance. 2004; 3(4):214-221.

Balakrishnan A, Therapeutic uses of peppermint - a review. J Pharm Sci Res. 2015; 7(7):474-476.

McKay DL, Blumberg JB. A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytother Res. 2006; 20:619–633.

Sun Z, Wang H, Wang J, Zhou L, Yang P. Chemical composition and anti-inflammatory, cytotoxic and antioxidant activities of essential oil from leaves of Mentha piperita grown in China. PLoS One. 2014; 9(12): e114767.

Scavroni J, Boaro CSF, Marques MOM, Ferreira LC. Yield and composition of the essential oil of Mentha piperita L. (Lamiaceae) grown with biosolid. Braz J Plant Physiol. 2005; 17(4): 345-352.

Verma RS, Rahman L, Verma RK, Chauhan A, Yadav AK, Singh A. Essential oil composition of menthol mint (Mentha arvensis) and peppermint (Mentha piperita) cultivars at different stages of plant growth from Kumaon region of western Himalaya. Open Access J Med Arom Plants. 2010; 1(1):13-18.

Schmidta E, Bailb S, Buchbauerb G, Stoilovac I, Atanasovad T, Stoyanovad A, Krastanovc A, Jirovetzb L. Chemical composition, olfactory evaluation and antioxidant effects of essential oil from Mentha x piperita. Nat Prod Commun. 2009; 4 (8):1107-1123.

Moghaddam M, Pourbaige M, Tabar HK, Farhadi N, Hosseini SMA. Composition and antifungal activity of peppermint (Mentha piperita) essential oil from Iran. J Essent oil Bearing Plants. 2013; 16 (4):506-512.

Tyagi AK, Malik A. Antimicrobial potential and chemical composition of Mentha piperita oil in liquid and vapour phase against food spoiling microorganisms. Food Contr. 2011; 22 (11): 1707-1714.

Karuza L, Blazevic N, Soljic Z. Isolation and structure of flavonoids from peppermint (Mentha piperita) leaves. Acta Pharm. 1996; 46:315-320.

Shimada K, Fujikawa K, Yahara K, Nakamura T. Antioxidative properties of xanthan on the autooxidation of soybean oil in cyclodextrin. J. Agric. Food Chem. 1992; 40:945-948.

Inderjit CLF, Foy KMM. Da kshini,Pluchea lanceolata : a n o x i o u s perennial weed. Weed Technol. 1998; 12:190-193.

Khan S, Rawat R, Rawat AKS, Shirwaiker A. A report on the quality control parameters of aerial parts of Pluchea lanceolata (DC.) Oliv. & Hiern, Asteraceae. Rev Brasil de Farmacog. 2010; 20:563-567.

Kirtikar KR, Basu BD. In: Indian Medicinal Plants. Dehradun. Mahendra Pal Singh BS, editor Vol. 2. 1993, 1307 p.

Chawla AS, Kaith BS, Handa SS, Kulshreshta DK, Srimal RC. Chemical investigation and anti-inflammatory activity of Pluchea

lanceolata. Fitoterapia. 1991; 62:441-444.

Srivastava V, Verma N, Tandon JS, Srimal RC, Lisse S, Zetlinger. Anti-inflammatory activity of Pluchea lanceolata: Isolation of an active principle. Int J Crude Drug Res. 1990; 28: 135-137.

Ali M, Siddiqui NA, Ramchandran R, Phytochemical investigation of aerial parts of Pluchea lanceolata C.B. Clarke. Indian J Chem. 2001; 40: 698-706.

Arya D, Patni V, Kant U, In vitro propagation and quercetin quantification in callus cultures of Rasna (Pluchea lanceolata Oliver et Hiern.). Indian J Biotechnol. 2008; 7: 283 - 387.

Ali M, Sultana S. Phytochemical investigation of the leaves of Ficus pandurata Sander. European J Biomed Pharm Sci. 2016; 3(10): 393-396.

Ali A, Jameel M, Ali M. New naphthyl esters from the bark of Ficus religiosa Linn. The Nat Prod J. 2014; 4:248-253.

Mabry TJ, Markham KR, Thomas MB. The systemic identification of flavonoids, New York, Springer- Verlag, 1970; 41-64 p.

Harborne JB, Williams CA. Flavone and flavonol glycosides, In: The Flavonoids, Harborne JB, Mabry TJ, Mabry H. London, Chapman and Hall, 1975.

Reddy NP, Reddy BAK, Gunasekar D, Alain B, Murti MM. Flavanoids from Limnophila indica. Phytochemistry. 2007; 68: 636-639.

Waffo AFK, Coombes PH, Mulholland DA, Nkeng Fack AE, Fomun ZT. Flavones and isoflavones from the West Afferican Fabaceae Erythrina vogelli. Phytochemistry. 2006; 67:459-463.

Harborne JB. Phytochemical methods, London, Chapman and Hall, London, 1973.

Gohari AR, Saeidnia S, Shahverdiar AR, Yassa N, Malmir M, Molllazade K, Naghinejad AR. Phytochemistry and antimicrobial compounds of Hymenocrater calycinus, Eurasain J Biosci. 2009; 3:64-68.

El-mousallamy AMD, Hawas UW, Husein SAM. Teucrol, a decarboxyrosemerinic acid and its 4′-O-triglycoside, tuecroside from Teucrium pilosum, Phytochemistry. 2000; 55:927-931.

Ali M. Techniques in terpenoids identification, Delhi, Birla publications, 2001