Antitrypanosomal Evaluation of Methanol Fractions of Stem Bark Extract of Acacia nilotica (Linn) against Trypanosoma congolense Infection in Albino Mice

doi.org/10.26538/tjnpr/v5i11.21

Authors

  • Esther Ogbole Department of Chemistry, University of Jos, Jos, Plateau State, Nigeria
  • Esther A. Adelakun Department of Chemistry, University of Jos, Jos, Plateau State, Nigeria
  • Mary L. Kagoro Department of Chemistry, University of Jos, Jos, Plateau State, Nigeria

Keywords:

Acacia nilotica, Antitrypanosomal activity, Trypanosoma congolense, Trypanosomiasis, Alternative therapy

Abstract

Trypanosomiasis is considered a plague in sub-Saharan Africa and chemotherapy of the disease is unsatisfactory. This study was conducted to explore an alternative source of an antitrypanosomal agent from the stem bark of Acacia nilotica. The methanol extract of A. nilotica stem bark was subjected to a qualitative phytochemical screening and fractionation by column chromatography using gradient elution with hexane, ethyl acetate, and methanol solvent mixtures. The acute toxicity of the crude extract was evaluated. The antitrypanosomal assay was performed on the column fractions (coded 1-9). Fifty-eight albino mice were used with diminazene aceturate as a standard drug for the in vivo assay. The mice were divided into eleven groups and the effect of each fraction on parasitaemia, packed cell volume (PCV), white blood count (WBC), red blood cell (RBC), body weight, and percentage survival of the animals were monitored over a period of 21 weeks. Treatment with fractions 4 and 5 of the ethyl acetate:methanol (90:10 and 70:30, respectively) resulted in prolonged infection, extension of life, and recovery 14 weeks beyond the negative control. Meanwhile, treatment with other fractions showed lower potency. The animals treated with fractions 4 and 5 also showed higher levels of PCV, RBC, and WBC. It was also observed that 20 and 40 % of mice treated with fractions 4 and 5 appeared to have recovered. The findings of this study revealed that fractions 4 and 5 can control anaemia, boost immunity, and prolong the life of infected mice beyond the standard drug, indicating that they offer promising prospect for lead compounds in the chemotherapy of trypanosomiasis.    

Author Biography

Esther Ogbole, Department of Chemistry, University of Jos, Jos, Plateau State, Nigeria

Nigerian Institute for Trypanosomiasis Research, Vom, Nigeria

References

World Health Organization. African Trypanosomiasis (Sleeping sickness). 2021 [cited April 15, 2021].

Available from: http://www.Who.int/news-room/factsheets/detail/trypanosomiasis-human-african (sleping-sickness).

Buscher P, Cecchi G, Jamonneau V, Priotto G. Human African trypanosomiasis. The Lancet. 2017; 390(1):2397-2409.

Kamga HLP, Assob NJC, Nsagha DS, Njunda AL, Njimoh DL. A community survey on the knowledge of neglected tropical diseases in Cameroon. Int J Med Biomed Res. 2012; 1(2):131-140.

Desquesnes M. Animal Trypanosomoses (including tsetsetransmitted but excluding surra and dourine).In: OIE Terrestrial Manual 2018; pp1222-1232.

Kennedy PGE and Rodgers J. Clinical and neuropathogenic aspects of Human African Trypanosomiasis. Front Immunol. 2019; 10(29/01):1-39.

Holt HR, Selby R, Mumba C, Napier GB, Guitian J. Assessment of Animal African Trypanosomiasis (AAT) vulnerability in cattle-owning communities of sub-Saharan Africa. Para Vec. 2016; 9(53):1-12.

Hill EW, O‟Goman GM, Agaba M, Gibson JP, Hanotte O, Kemp SJ, Naessens J, Coussens P M, HacHugh DE. Understanding bovine trypanosomiasis and trypanotolerance: the promise of functional genomics. Vet Immunol Immunopathol. 2005; 105(34):247-258.

Gier J, Cecchi G, Paone M, Dede P, Zhao W. The continental atlas of tsetse and African animal trypanosomiasis in Nigeria. Acta Tropica.2020; 204(04):1-29.

Giordani F, Morrison LJ, Rowan TG, DE-Koning HP, Barrett M. The animal trypanosomiasis and their chemotherapy: A review. Parasitol. 2016; 143(14):1862-1889.

Sofowora A. Traditional medicine: Definitions and terminology. In: Medicinal Plants and Traditional Medicine in Africa. John Wiley and Sons. Chichester, New York 1984; 6p.

Malviya S, Rawat S, Kharia A, Verma M. Medicinal attributes of Acacia nilotica (Linn): A comprehensive review on ethnopharmacological claims. Int J Pharm Life Sci. 2011; 2(6):830-837.

Ogbadoyi EO, Garba MH, Kabiru AY, Mann A, Okogun JI. Therapeutic evaluation of Acacia nilotica (Linn) stem bark extract in experimental African trypanosomiasis. Int J Appl Res Nat Prod. 2011; 4(2):11-18.

Kalaivani T, Rajasekaran C, Suthindhiran K, Matthew L. Free radical scanvenging activities from leaves of Acacia nilotica (L) Wild. Ex. Delite subsp. Indica (Benth) Brenan. Evid-based Compl Altern Med (Advance Access). 2010;

pp1-8.

Oladosu P, Samuel BB, Okhale SE, Ibrahim K, Okogun JI. Antitubercular activity of the dried fruits of Acacia nilotica Linn Wild. Jopat. 2007; 12(1):76-79.

Ogbole E, Dashak DA, Nvau JB, Daben MR, Abongaby GG, Obaloto OB, Oladipo OO, Igweh AC. Phytochemical screening and in vitro evaluation of the antitrypanosomal action of the methanolic leaf extract of Corymbiatorelliana.

Int J Ethnomed Pharmacogn. 2016; 3(1):20-29.

Trease GE, Evans MD. A textbook of pharmacognosy (13th Ed). London, Braillier, Tindal and Caussel. 1989; 289p.

Lorke D. A new approach to practical acute toxicity testing. Arch Toxicol. 1983; 54:257-287.

Herbert WJ, Lumsden WHR. Trypanosoma brucei: A rapid „‟matching‟‟ method for estimating the host‟s parasitaemia. Exp Parasitol. 1976; 40(3):427-443.

Larayetan R, Ololade SZ, Ogunmola OO, Ladogun A. Phytochemical constituents, antioxidant, cytotoxicity,

antimicrobial, antitrypanosomal, and antimalarial potentials of the crude extracts of Callistemon citrinus. Evid-Based

Compl Altern Med. 2019; (28/07):1-14.

Atawodi SE, Bulus T, Mamman M. Bioassay guided fractionation and anti-trypanosomal effect of fractions and

crude aqueous and methanolic extracts of Terminalia avicennioides (Guill. and Perr.) Parts. Int J Bio. 2011; 3(3):19-30.

Kannan N, Sakthivel KM, Guruvayoorappan C. Protective effect of Acacia nilotica (L) against acetaminophen-induced

hepatocellular damage in wistar rats. Adv Pharmacol Sci. 2013(29/05):1-9.

Ogbadoyi EO, Garba, MH, Kabiru AY, Mann A, Okogun, JI. Therapeutic evaluation of Acacia nilotica (Linn) stem

bark extract in experimental African trypanosomiasis. Int J Appl Res Nat Prod. 2011; 4(2):11-18.

Anosa VO. Haematology and biochemical changes in human animal trypanosomosis. J. ITARD. 1988; 41(1):65-78.

Jibike GI and Anika SM. Leucocyte responce in pigs experimentally infected with T. brucei and subsequently treated with diffluoromethylorinthine (DFMO) alone and in combination with diaminazineaceturate. Trop Vet. 2003; 21(4):192-199.

Taylor K and Authie EML Pathogenesis of animal trypanosomiasis. In: The Trypanosomiases, (Eds. I. Maudlin, P. H. Holmes and M. A. Miles). CABI Publishing, Cambridge, USA. 2004; 331-353p.

Jenkins GC, McCorrie P, Forsberg CM, Brown JL. Studies on the anaemia in rabbits infected with Trypanosoma brucei: Evidence for haemolysis. J Comp Pathol. 1980; 90(1):107-121.

Abenga JN, Enwezor FNC, Lawani F, Ezebuiro C, Sule J,David KM. Prevalence of trypanosomosis in trade cattle at slaughter in Kaduna, Nigeria. Nig J Parasitol. 2002; 23(1):107-110.

Losos GJ and Ikede B. Review of pathology of disease of domestic and laboratory animals caused by T. congolense,

T. vivax, T. brucei, T. rhodesiense and T gambiense. Vet Pathol. 1972; 9(1):1-71.

Murray M, Dexter TM. Anaemia in bovine African trypanosomiasis. A review. Acta Trop. 1988; 45(4):389-432.

Samuel FU, Adamu S, Bisalla M, Chiezey NP, Mohammed AK, Bello TK, Ibrahim M, Ereke SO, Magaji HJ, Maikaji FS. Effect of T. congolense on haematological parameters in experimentally infected donkeys. J Anim Prod Res. 2016;

(1):14-24.

Akanji MA, Adeyemi S, Oguntoye S, Sulyman, F. Psidiumguajava extract reduces trypanosomosis associated lipid peroxidation and raises glutathione concentrations in infected animals. EXCLI J. 2009; 8(1):148-154.

Igbokwe IO, Umar IA, Omage JJ, Ibrahim NDG, Kadima KB, Obagaiye K, Saror DI, Esievo KAN. Effect of acute Trypanosoma vivax infection on cattle erythrocyte glutathione and susceptibility to in vitro peroxidation. Vet Parasitol. 1996; 63(1): 215-224.

Taiwo VO, Olaniyi MO, Ogunsanmi AO. Comparative plasma biochemical changes and susceptibility of erythrocytes to in vitro peroxidation during experimental Trypanosome congolenseand, T. bruceiinfections in sheep. Israel. J Vet Med. 2003; 58(4):112-117.

Kyriazakis I. Pathogen-induced anorexia: An herbivore strategy or an unavoidable consequence of infection. Anim

Prod Sci. 2014; 54(9):1190-1197.

Downloads

Published

2021-11-01

How to Cite

Ogbole, E., A. Adelakun, E., & L. Kagoro, M. (2021). Antitrypanosomal Evaluation of Methanol Fractions of Stem Bark Extract of Acacia nilotica (Linn) against Trypanosoma congolense Infection in Albino Mice: doi.org/10.26538/tjnpr/v5i11.21. Tropical Journal of Natural Product Research (TJNPR), 5(11), 2016–2021. Retrieved from https://tjnpr.org/index.php/home/article/view/355