Unfolding the Cytotoxic Potential of <i>Cassia siamea</i> L. (Fabaceae) Stem via a Combination of Cost-Effective Anticancer Screening Templates

http://www.doi.org/10.26538/tjnpr/v8i1.50

Authors

  • Oluwasegun Adedokun Department of Pharmacognosy and Natural Products, Afe Babalola University, Nigeria
  • Motunrayo Akinlo College of Pharmacy, Institut Superieur Bilingue Libre Du Togo (IBLT), Togo
  • Ibiwumi Adedeji Department of Pharmacognosy and Natural Products, Afe Babalola University, Nigeria
  • Oluyemi Wande Department of Pharmaceutical and Medicinal Chemistry, Afe Babalola University, Nigeria
  • Ogochukwu Ume Department of Pharmaceutical Chemistry, Igbinedion University, Nigeria
  • Nnamani Didacus Department of Pharmaceutical Technology, Igbinedion University, Nigeria
  • Olaiya Evans College of Pharmacy, Institut Superieur Bilingue Libre Du Togo (IBLT), Togo

Keywords:

Cassia siamea, Chromatography, Cytotoxicity, Raniceps raninus, Saccharomyces cerevisiae

Abstract

Cassia siamea (SB) is a common medicinal plant in Southwestern Nigeria, known for its usage in the management of cancer among locals. The study aimed to unveil the claimed anticancer property of SB using cytotoxic bench-top bioassays. Cytotoxicity potential was investigated using Raniceps raninus and Saccharomyces cerevisiae bioassay models, and radical scavenging strength against DPPH stable radical was also unfolded. SB fractionation resulted in three bulked column fractions (SB1 – 3). SB1 was observed to induce severe DNA damage with a percentage mortality of 75.21±5.85%, which is significantly different from 21.85±7.30% p<0.05 observed with 5% DMSO (NC; negative control). The concentration-dependent increase in the mortality of R. raninus, which is an indication of its cytotoxic influence, was noted with SB1 at 10 – 50 µg/mL with 100.00±0.00% mortality observed at 40 and 50 µg/mL. SB1A obtained from SB1 showed the presence of 16 compounds (GC-MS analysis), with caffeic acid found to be the most abundant. Further fractionation of SB1B (obtained from SB1) resulted in pure compound SB1B3 (15.78 mg), which exhibited about 69.82±8.82% mortality of the S.cerevisiae p<0.05 relative to the NC. SB1B3 at 5 – 25 µg/mL also showed 100.00±0.00% mortality of R. raninus at p<0.05 relative to

  1. Although the identity of the SB1B3 is yet to be ascertained. The findings of this research confirm that SB possesses cytotoxic potential as claimed by locals.

Author Biographies

Oluwasegun Adedokun, Department of Pharmacognosy and Natural Products, Afe Babalola University, Nigeria

CBIOS – Universidade Lusofona’s Research Center for Bioscience and Health Technologies, Lisbon, Portugal

Motunrayo Akinlo, College of Pharmacy, Institut Superieur Bilingue Libre Du Togo (IBLT), Togo

College of Pharmacy, Eco African College of Health Sciences and Management Technology, Nigeria

Olaiya Evans, College of Pharmacy, Institut Superieur Bilingue Libre Du Togo (IBLT), Togo

College of Pharmacy, Eco African College of Health Sciences and Management Technology, Nigeria

References

Sofi MS, Nabi S, Mohammed C, Sofi S. The role of phytocompounds in cancer treatment: A current review. ~ 83 ~ J Med Plants Stud. 2018;6(4):83–93.

Adedokun O, Ntungwe EN, Viegas C, Adesina B, Barboni L, Maggi F, Patricia R. Enhanced Anticancer Activity of Hymenocardia acida Stem Bark Extract Loaded into PLGA Nanoparticles. Pharmaceuticals. 2022;15(5 - 15).

Stewart BW, Wild CP. World Cancer Report 2014 - World Health Organization. IARC Nonserial Publ. 2014.

Sarker SD, Nahar L, Miron A, Guo M. Anticancer natural products. Annual Reports in Medicinal Chemistry. Elsevier Inc. 2020; 55(1): 45–75 http://dx.doi.org/10.1016/bs.armc.2020.02.001

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1- 13).

Ajaiyeoba EO, Ashidi JS, Okpako LC, Houghton PJ, Wright CW. Antiplasmodial compounds from Cassia siamea stem bark extract. Phyther Res. 2008;22(2).

Wang SS, Huang WZ, Zeng GZ, Zhu H, Zhang Z, Li GP, Jiang MY. Chemical constituents of Cassia siamea. Zhongguo Zhongyao Zazhi. 2019;44(4 -16).

Adedokun O, Gbolade A, Ayinde B. 13, 14-Epoxyoleanan-3-ol-acetate: A male fertility enhancing constituent from hexane fraction of Momordica charantia Linn (Curcubitaceae). Turkish J Pharm Sci. 2021; 29;19(2):180-186. doi: 10.4274/tjps.galenos.2021.48264.

Biofarmacêuticas C, Roberto A, Caetano PP. A high-throughput screening method for general cytotoxicity part I Chemical toxicity Método rápido para triagem da citotoxicidade geral parte I. Toxicidade química. 2005;11.

Ayinde BA, Agbakwuru U. Cytotoxic and growth inhibitory effects of the methanol extract Struchium sparganophora Ktze (Asteraceae) leaves. Pharmacogn Mag. 2010;6(24-38).

Oluwasegun A, Nasiru A, John E. In vitro antioxidant potential of methanol extracts of Allamanda schottii Pohl and Thevetia peruviana (pers.) K . (Apocyanaceae). 2015;5(1):10–23.

Okolie NP, Falodun A, Davids O. Evaluation of The Antioxidant Activity of Root Extract of Pepper Fruit (Dennetia tripetala), and it’s Potential for the Inhibition of Lipid Peroxidation. African Journal of Traditional, Complementary and Alternative Medicines. 2014; 11(3): 221–227.

Deshpande SN, Kadam DG. GCMS analysis and antibacterial activity of Piper betle (Linn) leaves against Streptococcus mutans. Asian J Pharm Clin Res. 2013;6(5-21).

Oshadie G, Silva D, Abeysundara AT, Minoli M, Aponso W. Extraction methods, qualitative and quantitative techniques for screening of phytochemicals from plants. J Essent Oils Nat Prod. 2017;5(2-24).

Mohammed A, Liman ML, Atiku MK. Chemical composition of the methanolic leaf and stem bark extracts of Senna siamea Lam. Journal of Pharmacognosy and Phytotherapy. 2013; 5(5): 98-100, DOI: 10.5897/JPP12.043 ISSN 2141-2502

Buschini A, Poli P, Rossi C. Saccharomyces cerevisiae as an eukaryotic cell model to assess cytotoxicity and genotoxicity of three anticancer anthraquinones. Mutagenesis. 2003; 18. http://mutage.oxfordjournals.org/

Nanasombat S, Teckchuen N. Antimicrobial, antioxidant and anticancer activities of Thai local vegetables. J Med Plants Res. 2009;3(5-21).

Chantong B, Kampeera T, Sirimanapong W, Wongtongtair S, Hutamekalin P, Meksuriyen D. Antioxidant activity and cytotoxicity of plants commonly used in veterinary medicine. In: Acta Horticulturae. 2008.

Ohiagu FO, Chikezie PC, Chikezie CM, Enyoh CE. Anticancer activity of Nigerian medicinal plants: a review. Futur J Pharm Sci. 2021;7(1-19).

Yang Y, Yue-de W, Huan-Huan X, Hang-Ying M. A new sesquiterpene from seeds of Cassia occidentalis and its cytotoxicity. China Journal of Chinese Materia Medica. 2016. 41(17):3256-3259. DOI:10.4268/cjcmm20161722

Yueh-Hsiung Kuo , Ping-Hung Lee, Yung-Shun Wein. Four new compounds from the seeds of Cassia fistula. J Nat Prod. 2002;65(8):1165-7. doi: 10.1021/np020003k.

Biosci IJ, Rubiaceae JESEAB, Oise IE, Adesina AB, Adekanmi A. Comparative phytochemical, cytototic and growth inhibitory effects of the leaf and root barks of Sarcocephalus Latifolius (J.E. Smith) E.A. Bruce (Rubiaceae). Int J Biosci. 2014;6655:162–9.

Adebayo IA, Gagman HA, Balogun WG, Adam MAA, Abas R, Hakeem KR, Arsad H. Detarium microcarpum, Guiera senegalensis, and Cassia siamea Induce Apoptosis and Cell Cycle Arrest and Inhibit Metastasis on MCF7 Breast Cancer Cells. Evidence-based Complement Altern Med. 2019. 23-45

Thakkar KN, Prasad AK, Nayak J, Iyer S V., Kumar S. Antioxidant and in vitro cytotoxic activity of extracts of aerial parts of Cocculus hirsutus (L) using cell line cultures (breast cell line). J Phytopharm. 2014;3(6):395–9.

Gurpreet Kaur , M Sarwar Alam, Zoobi Jabbar, Kaleem Javed, Mohammad Athar. Evaluation of antioxidant activity of Cassia siamea flowers. J Ethnopharmacol. 2006.6;108(3):340-8. doi: 10.1016/j.jep.2006.05.021.

Agu KC, Okolie NP, Falodun A, Engel-Lutz N. In vitro anticancer assessments of Annona muricata fractions and in vitro antioxidant profile of fractions and isolated acetogenin (15-acetyl guanacone). BMC complementary and alternative medicine.2018;14, 1-14.

Engel N, Falodun A, Kühn J, Kragl U, Langer P, Nebe B. Pro-apoptotic and anti-adhesive effects of four African plant extracts on the breast cancer cell line MCF-7. Journal of Cancer Research and Practice 5 (2), 53-66

Liang J, Cao R, Wang X, Zhang Y, Wang P, Gao H. Mitochondrial PKM2 regulates oxidative stress-induced apoptosis by stabilizing Bcl2. Cell Res. 2017;27(3-23).

Imran M, Rauf A, Abu-Izneid T, Nadeem M, Shariati MA, Khan IA, et al. Luteolin, a flavonoid, as an anticancer agent: A review. Vol. 112, Biomedicine and Pharmacotherapy. 2019.

Kaur G, Alam MS, Jabbar Z, Javed K, Athar M. Evaluation of antioxidant activity of Cassia siamea flowers. J Ethnopharmacol. 2006;108(3-25).

Nela Pavlíková. Caffeic Acid and Diseases—Mechanisms of Action. Int. J. Mol. Sci. 2023, 24(1), 588; https://doi.org/10.3390/ijms24010588

Published

2024-02-01

How to Cite

Adedokun, O., Akinlo, M., Adedeji, I., Wande, O., Ume, O., Didacus, N., & Evans, O. (2024). Unfolding the Cytotoxic Potential of <i>Cassia siamea</i> L. (Fabaceae) Stem via a Combination of Cost-Effective Anticancer Screening Templates: http://www.doi.org/10.26538/tjnpr/v8i1.50. Tropical Journal of Natural Product Research (TJNPR), 8(1), 6056–6061. Retrieved from https://tjnpr.org/index.php/home/article/view/3433