Anti-SARS-CoV-2 Activity and Acute Toxicity Screening of Annona muricata and Artemisia annua Leaf Extracts http://www.doi.org/10.26538/tjnpr/v8i1.45
Main Article Content
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Available data suggests that there is no specific treatment in modern medicine. The present study aims to investigate the anti-SARS-CoV-2 activity of Annona muricata and Artemisia annua leaf extracts as well as their acute toxicity study.
The phytochemical screening of the plant extracts was done using standard methods. The acute toxicity evaluation was done using Lorke method. The antiviral activity screening against SARS-CoV-2 was done by plaque assay with Vero-E6 cell line.
Phytochemical screening revealed the presence of alkaloids, terpenoids, flavonoids, saponins and steroids in both plants, while tannins and anthraquinone glycosides were absent. The quantification of SARS-CoV-2 by plaque assay with Vero (E6) cell line shows a reduction in the zones of cellular death for the extracts treated cells compared to the cells with the virus only. Acute toxicity test showed no death or abnormal behavioural changes in mice during and after 24 hours of extract administration.
On the basis of the results obtained from the present study, both Annona muricata and Artemisia annua leaf extracts are considered to have some level of inhibition against SARS-CoV-2 virus growth.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
WHO. Coronavirus disease 2019 (COVID-19) Situation Report-170. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/(Accessed May 09, 2022).
WHO. Director-General’s opening remarks at the media briefing on COVID-19. In WHO Newsletter. Available online: https://www.who.int/dg/ speeches/detail/who-director-general-s-opening-remarks-at-themedia-briefing-on-covid-19--13-april-2020. Accessed June 13, 2020.
Wu F, Zhao S, Yu B. Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, Yuan ML, Zhang YL, Dai FH, Liu Y, Wang QM, Zheng JJ, Xu L, Holmes
EC, Zhang YZ. A new coronavirus associated with human respiratory disease in China. Nature 2020; 579:265–269.
Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, Villamizar-Peña R, Holguin-Rivera Y, Escalera-Antezana JP, Alvarado-Arnez LE,
Bonilla-Aldana DK, Franco-Paredes C, Henao-Martinez AF, Paniz-Mondolfi A, Lagos-Grisales GJ, Ramírez-Vallejo E, Suárez JA, Zambrano LI, Villamil-
Gómez WE, Balbin-Ramon GJ, Rabaan AA, Harapan H, Dhama K, Nishiura H, Kataoka H, Ahmad T, Sah R. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis. 2020; 101623.
Cao Y, Hiyoshi A, Montgomery S. COVID-19 case-fatality rate and demographic and socioeconomic influencers: worldwide spatial regression analysis based on country-level data. Br Med J Open. 2020; 10(11):e043560.
Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, Doudier B, Courjon J, Giordanengo V, Vieira VE, Tissot Dupont H, Honoré S, Colson P, Chabrière E, La Scola B, Rolain JM, Brouqui P, Raoult D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020; 56(1):105949.
Bandaranayake WM. “Quality control, screening, toxicity, and regulation of herbal drugs,’’ in Modern Phytomedicine. Turning Medicinal Plants into Drugs eds Ahmad I., Aqil F., Owais M. (Weinheim:Wiley-VCH GmbH & Co. KGaA; 2006. 25–57p.
Che C-T, George V, Ijinu TP, Pushpangadan P, Andrae-Marobela K. Chapter 2 -Traditional Medicine. In: Simone Badal, Rupika Delgoda (Eds), Pharmacognosy, Academic Press. 2017. 15-30 p.
Newman DJ and Cragg GM. Natural Products as Sources of New Drugs from 1981 to 2014. J Nat Prod. 2016; 79:629-661.
Denaro M, Smeriglio A, Barreca D, De Francesco C, Occhiuto C, Milano G, Trombetta D. Antiviral activity of plants and their isolated bioactive compounds: An update. Phytother Res. 2020; 34:742-768.
Lin LT, Hsu WC, Lin CC. Antiviral natural products and herbal medicines. J Trad Complement Med. 2014; 4:24–35.
Moghadamtousi SZM, Nikzad S, Kadir HA, Abubakar S, Zandi K. Potential antiviral agents from marine fungi: An overview. Mar Drugs. 2015; 13:4520–4538.
Oliveira AFCS, Teixeira RR, de Oliveira AS, de Souza APM, da Silva ML, de Paula SO. Potential antivirals: Natural products targeting replication enzymes of dengue and Chikungunya viruses. Molecules. 2017; 22:505.
Parida MM, Upadhyay C, Pandya G, Jana AM. Inhibitory potential of neem (Azadirachta indica Juss) leaves on dengue virus type-2 replication. J Ethnopharmacol. 2002; 79:273–278.
Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY, Xing X, Xiang N, Wu Y, Li C, Chen Q, Li D, Liu T, Zhao J, Liu M, Tu
W, Chen C, Jin L, Yang R, Wang Q, Zhou S, Wang R, Liu H, Luo Y, Liu Y, Shao G, Li H, Tao Z, Yang Y, Deng Z, Liu B, Ma Z, Zhang Y, Shi G, Lam TTY, Wu JT, Gao GF, Cowling BJ, Yang B, Leung GM, Feng Z. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med. 2020; 382:1199−1207.
Falodun A, Erharuyi O, Imieje V, Falodun JE, Ahomafor J, Onyekaba T, Albadary, Hamann M. Antihepatitis C Virus Activity of five Selected Endemic Medicinal Plants of Nigeria. Afr J Pharm Res Dev. 2014; 6:6 - 10.
Ogbole OO, Akinleye TE, Segun PA, Faleye TC, Adeniji AJ. In vitro antiviral activity of twenty-seven medicinal plant extracts from Southwest Nigeria against three serotypes of echoviruses. Virol J. 2018; 15:110.
Silva J, Figueiredo P, Byler KG, Setzer WN. Essential Oils as Antiviral Agents. Potential of Essential Oils to Treat SARS-CoV-2 Infection: An In-Silico Investigation. Int J Mol Sci. 2020; 21:3426.
Thuy BTP, My TTA, Hai NTT, Hieu LT, Hoa TT, Loan HTP, Triet NT, Anh TTV, Quy PT, Tat PV, Hue NV, Quang DT, Trung NT, Tung VT, Huynh LK,
Nhung NTA. Investigation into SARS-CoV2 Resistance of Compounds in Garlic Essential Oil. ACS Omega. 2020; 5:8312–8320.
Nugraha AS, Damayanti YD, Wangchuk P, Keller PA. Anti-Infective and Anti-Cancer Properties of the Annona Species: Their Ethnomedicinal Uses, Alkaloid Diversity, and Pharmacological Activities. Molecules 2019; 24:4419.
Moghadamtousi SZ, Fadaeinasab M, Nikzad S, Mohan G, Ali HM, Kadir HA. Annona muricata (Annonaceae): A Review of Its Traditional Uses, Isolated Acetogenins and Biological Activities. Int J Mol Sci. 2015; 16:15625–15658.
Pieme CA, Kumar SG, Dongmo MS, Moukette BM, Boyoum FF, Ngogang JY, Saxena AK. Antiproliferative activity and induction of apoptosis by
Annona muricata (Annonaceae) extract on human cancer cells. BMC Complement Alternat Med. 2014; 14:516.
Badrie N and Schauss AG. Soursop (Annona muricata L.): Composition, Nutritional Value, Medicinal Uses, and Toxicology. 1st ed. Elsevier Inc.: London, UK; 2010.
De Souza EBR, Da Silva RR, Afonso S, Scarminio IS. Enhanced Extraction Yields and Mobile Phase Separations by Solvent Mixtures for the Analysis of Metabolites in Annona muricata L. Leaves. J Sep Sci. 2009; 32:4176–4185.
Wélé A, Zhang Y, Caux C, Brouard JP, Pousset JL, Bodo B. Annomuricatin C, a Novel Cyclohexapeptide from the Seeds of Annona muricata. Comptes Rendus Chim. 2004; 7:981–988.
León-Fernández AE, Obledo-Vázquez EN, Vivar-Vera MDA, Sáyago-Ayerdi SG, Montalvo-González E. Evaluation of emerging methods on the polyphenol content, antioxidant capacity and qualitative presence of acetogenins in soursop pulp (Annona muricata L.). Rev Bras Frutic. 2015; 39:E358.
Biba VS, Amily A, Sangeetha S, Remani P. Anticancer, antioxidant and antimicrobial activity of Annonaceae family. World J Pharm Pharm Sci. 2014; 3:1595–604.
Soleimani T, Keyhanfar M, Piri K, Hasanloo T. Morphological evaluation of hairy roots induced in Artemisia annua L. and investigating elicitation effects on the hairy roots biomass production. Int J Agric Res Rev. 2012; 2:1005–1013.
Zanjani KE, Rad AS, Bitarafan Z, Aghdam AM, Tofigh, Taherkhani, Khalili P. Physiological Response of Sweet Wormwood to Salt Stress under Salicylic Acid Application and Non Application Condition. Life Sci J. 2012; 9:4190–4195.
Nkuitchou-Chougouo RDK, Kouamouo J, Titilayo OJ, Dalia FF, Gilbert H, Pierre L, Marc F, Marc F, Simon S, Lysette K, Mathieu T, Denis W, Jean TM,
Lazare K, Pierre T. Comparative study of chemical composition of Artemisia annua Essential oil growing wild in Western Cameroon and
Luxembourg by µ-CTE/TD/GC/MS. North Asian Int Res J Consort. 2016; 2(4):1-20.
Lutgen P. La tisane d’artemisiaannua, unepuissantepolythérapie! Mal Trop Asp Humanit Sci. 2009; 25:6–7.
Sofowora A. Screening Plants for Bioactive Agents. In Medicinal Plants and Traditional Medicine in Africa. Spectrum Books Ltd., Ibadan: 1982.
Evans WC. Trease and Evans Pharmacognosy, 15th ed. Churchill Livingstone, Harcourt publishers Limited, London; 2002.
Directive 2010/63/EU of the European Parliament and of the Council". Official J Eur Union. Retrieved 16 August 2021.
Lorke D. A new approach to practical acute toxicity testing. Arch Toxicol. 1983; 54:275-287.
Matskevich AA, Jung JS, Schümann M, Cascallo M, Moelling K. Vero Cells as a Model to Study the Effects of Adenoviral Gene Delivery Vectors on the RNAi System in Context of Viral Infection. J Innate Immun. 2009; 1:389–394.
Sherif HB, Baba G, Abdullahi SM. Acute and sub- chronic toxicity profile of Annona muricata (Sour sop) on wister albino rats. Bayero J Pure Appl Sci. 2017; 10:57-63.
Al-Medhtiy MH, Jabbar AA, Shareef SH, Ibrahim IAA, Alzahrani AR, Abdulla MA. Histopathological Evaluation of Annona muricata in TAA-Induced Liver Injury in Rats. Proc. 2022; 10:1613.
Agu KC, Okolie NP, Eze I, Anionye JC, Falodun A. Phytochemical analysis, toxicity profile, and hemomodulatory properties of Annona muricata (Soursop). Egypt J Haematol. 2017; 42:36-44.
Omoja VU, Ihedioha TE, Eke GI, Peter-Ajuzie IK, Okezie SE. Evaluation of the acute toxicity, phytochemical constituents and anti - ulcer properties of methanolic leaf extract of Annona muricata in mice. J Compl Med Res. 2014; 3:37-43.
Alphonse S, Natacha A, Melanie A, Behanzin J. Evaluation of the toxicity of Annona muricata leaf extracts on liver and kidney function and investigation of acute and subacute toxicity in Wistar rats. Am J PharmTech Res. 2018; 8:189-217.
Siddiqui MFMF, Waghmare SP, Hajare SW, Ingole RS, Deshmukh SG, Chepte SD, Ali SA. Phytochemical analysis and acute toxicity studies of Artemisia annua in Swiss albino mice. J Pharmacogn Phytochem. 2018; 7:1893-1895.
XuMei N, Jin Z, XiaoXue J, HaoChi Z, PengY. Acute toxicity tests of the extract from Artemisia annua in KM mice and Wistar rat. Chinese Veterinary Science/Zhongguo Shouyi Kexue 2018; 48:247-255.
Ogbole EA, Ogbole Y, Peter JY, Builders MI, Aguiyi JC. Phytochemical Screening and In vivo Antiplasmodial Sensitivity Study of Locally Cultivated Artemisia annua Leaf Extract Against Plasmodium berghei. Am J Ethnomed. 2014; 1:042-049.
Chen W-H, Strych U, Hotez PJ, Bottazzi ME. The SARS-CoV-2 vaccine pipeline: An overview. Curr Trop Med Rep. 2020; 7:61-64.
Krammer F. SARS-CoV-2 vaccines in development. Nature 2020; 586:516-527.
Lim J, Jeon S, Shin H-Y, Kim MJ, Seong YM, Lee WJ, Choe KW, Kang YM, Lee B, Park SJ. Case of the index patient who caused tertiary transmission of coronavirus disease 2019 in Korea: The application of lopinavir/ritonavir for the treatment of COVID-19 pneumonia monitored by quantitative RT-PCR. J Korean Med Sci. 2020; 35:e79.
Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020; 30:269–271.
Balderrama-Carmona AP, Silva-Beltrán NP, Gálvez-Ruiz JC, Ruíz-Cruz S, Chaidez-Quiroz C, Morán-Palacio EF. Antiviral,