Antibacterial Activity of Ethanol Extract of the Marine Sponge (<i>Agelas sp</i>) Symbiont <i>Bacillus cereus</i> MH997647 IA5 against <i>Klebsiella pneumoniae</i> ESBL

http://www.doi.org/10.26538/tjnpr/v8i1.37

Authors

  • Endang.S Gultom Departement of Doctoral Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, North of Sumatera, 20155, Indonesia
  • Urip Harahap Departement of Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, North of Sumatera, 20155, Indonesia
  • Dwi Suryanto Departement of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, North of Sumatera, 20155, Indonesia
  • Herbert Sipahutar Departement of Biology, Faculty of Mathematics and Natural Sciences , Universitas Negeri Medan, Medan Estate, North of Sumatera , 20223, Indonesia
  • Martina Restuati Departement of Biology, Faculty of Mathematics and Natural Sciences , Universitas Negeri Medan, Medan Estate, North of Sumatera , 20223, Indonesia

Keywords:

Klebsiella pneumonia, Antibacterial activity, Agelas sp., Bacillus cereus

Abstract

Klebsiella pneumoniae ESBL is the major causative organism of pneumonia, a lower respiratory tract infection that could be lethal. In 2019, pneumonia was ranked the fourth-leading cause of death worldwide. This study aims to investigate the antibacterial activity of the ethanol extract of Bacillus cereus MH997647 IA5, a symbiont of the marine sponge Agelas sp. against Klebsiella pneumoniae ESBL as well as to identify the secondary metabolites present in the extract. The antibacterial activity of the sponge symbiont was assessed using the disc diffusion assay. The ethanol extract of the sponge symbiont was subjected to liquid chromatography-mass spectrometry (LC-MS-MS) to identify the compounds present in the extract. The results of the antibacterial activity screening showed that the sponge symbiont had growth inhibitory activity against Klebsiella pneumoniae ESBL with an average inhibition zone diameter of 7.72 mm. The LC-MS/MS analysis identified seven compounds in the ethanol extract of the sponge symbiont Bacillus cereus MH997647 IA5, namely DL-phenylalanine, L-(+)-leucine, DL-tyrosine, L-(+)-valine, choline, noradrenaline, and tributyl citrate acetate. These compounds could be responsible for the antibacterial activity of the ethanol extract of Bacillus cereus MH997647 IA5 against Klebsiella pneumoniae ESBL. Therefore, Bacillus cereus MH997647 IA5 could be a potential source of active compounds for the treatment of bacterial infection particularly pneumonia.

References

Choby JE, Howard-Anderson J, Weiss DS. Hypervirulent Klebsiella pneumoniae-clinical and molecular perspectives. J Intern Med. 2020; 287:283-300.

Sequeira RP, Mcdonald J, Marchesi JR, Clarke TB. Commensal bacteroidetes protect against Klebsiella pneumoniae colonization and transmission through IL-36 signalling. Nat Microbiol. 2020; 5:304–313.

Effah CY, Sun T, Liu S, Wu Y. Klebsiella pneumoniae: an increasing threat to public health. Ann. Clin. Microbiol. Antimicrob. 2020; 19(1):1-9.

Greay TL, Gofton AW, Zahedi A, Paparini A, Linge KL, Joll CA, Ryan UM. Evaluation of 16S next-generation sequencing of hypervariable region 4 in wastewater samples: An unsuitable approach for bacterial enteric pathogen identification. Sci. Total Environ. 2019; 670:1111-24.

Carrier TJ, Maldonado M, Schmittmann L, Pita L, Bosch TC, Hentschel U. Symbiont transmission in marine sponges: reproduction, development, and metamorphosis. BMC Biol. 2022; 20(1):100.

Berglund B, Hoang NTB, Tärnberg M, Le NK, Svartström O, Khu DTK, Nilsson M, Le HT, Welander J, Olson L, Larsson M, Nilsson LE, Hanberger H. Insertion sequence transpositions and point mutations in mgrB causing colistin resistance in a clinical strain of carbapenem-resistant Klebsiella pneumoniae from Vietnam. Int J Antimicrob Agents. 2018; 51:789-793.

Effah CY, Sun T, Liu S, Wu Y. Klebsiella pneumoniae: an increasing threat to public health. Annals of clinical microbiology and antimicrobials. 2020; 19(1):1-9.

Papon N, Copp BR, Courdavault V. Marine drugs: Biology, pipelines, current and future prospects for production. Biotechnol Adv. 2022; 54:107871.

Prastiyanto ME, Kartika AI, Darmawati S, Radjasa OK. Bioprospecting of bacterial symbionts of sponge Spongia officinalis from Savu Sea, Indonesia for antibacterial potential against multidrug-resistant bacteria. Biodiversitas J Biol Divers. 2022; 23(2):1118-1124.

Trianto A, Radjasa OK, Sabdono A, Muchlissin SI, Afriyanto R, Sulistiowati S, Mccauley E. Exploration culturable bacterial symbionts of sponges from Ternate Islands, Indonesia. Biodiversitas J Biol Divers. 2019; 20(3):776-782.

Gultom ES, Hasruddin, Sitompul AF, Situmorang AD, Prasetya E. Identifying Sponge Symbiont Bacterial with Antibacterial Activity against Multi-Drug Resistant Organism (MDRO) Bacteria from Sea Waters in Sibolga, North Sumatra Indonesia. Biosphere: Tadris Biol J. 2021; 12 (2):169-184.

Gultom ES, Suryanto D, Munir E, Diningrat DS. Bacteria Extract Activity Associated with Sponge Haliclona sp and Axinellid sp as Antibacterial. Int J Adv Res. 2017; 5(1):751-759.

Mohan G, Thangappanpillai AKT, Ramasamy B. Antimicrobial activities of secondary metabolites and phylogenetic study of sponge endosymbiotic bacteria, Bacillus sp. at Agatti Island, Lakshadweep Archipelago. Biotechnol Rep. 2016; 11:44-52.

Taylor MW, Radax R, Steger D, Wagner M. Sponge-Associated Microorganisms: Evolution, Ecology, and Biotechnological Potential. Microbiol Mol Biol Rev. 2007; 71(2):295-347.

Rau M, Rehman A, Dittrich M, Groen AK, Hermanns HM, Seyfried F, Beyersdorf N, Dandekar T, Rosenstiel P, Geier A. Fecal SCFAs and SCFA-producing bacteria in gut microbiome of human NAFLD as a putative link to systemic T-cell activation and advanced disease. United Eur Gastroenterol J. 2018; 6(10):1496-1507.

Anteneh YS, Yang Q, Brown MH, Franco CM. Antimicrobial activities of marine sponge-associated bacteria. Microorganisms. 2021; 9(1):171.

Nurhamidin SJ, Wewengkang DS, Suoth EJ. Uji aktivitas ekstrak dan fraksi organisme laut spons Aaptos aaptos terhadap bakteri Escherichia coli dan Staphylococcus aureus. Pharmacon. 2022; 11(1):1285-1291.

Rashiya N, Padmini N, Ajilda AA, Prabakaran P, Durgadevi R, Ravi AV, Ghosh S, Sivakumar N, Selvakumar G. Inhibition of biofilm formation and quorum sensing mediated virulence in Pseudomonas aeruginosa by marine sponge symbiont Brevibacterium casei strain Alu 1. Microb Pathog. 2021; 150:104693.

Indraningrat AA, Micheller S, Runderkamp M, Sauerland I, Becking LE, Smidt H, Sipkema D. Cultivation of sponge-associated bacteria from Agelas sventres and Xestospongia muta collected from different depths. Mar Drugs. 2019; 17(10):578.

Peter C, Thoms S, Koch F, Sartoris FJ, Bickmeyer U. Effects of sponge-derived Ageladine A on the photosynthesis of different microalgal species and strains. Plos One. 2020; 15(12):e0244095.

Simister RL, Deines P, Botté ES, Webster NS, Taylor MW. Sponge‐specific clusters revisited: a comprehensive phylogeny of sponge‐associated microorganisms. Environ Microbiol. 2012; 14 (2):517-524.

Bell JJ. The functional roles of marine sponges. Estuarine Coastal Shelf Sci. 2008; 79 (3): 341-353.

Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep. 2020; 37(2):175-223.

Xu Z, Zhang Y, Fu H, Zhong H, Hong K, Zhu W. Antifungal quinazolinones from marine-derived Bacillus cereus and their preparation. Bioorg Med Chem Lett. 2011; 21(13):4005-4007.

Tamehiro N, Okamoto-Hosoya Y, Okamoto S, Ubukata M, Hamada M, Naganawa H, Ochi K. Bacilysocin, a novel phospholipid antibiotic produced by Bacillus subtilis 168. Antimicrob Agents Chemother. 2022; 46 (2):315-320.

Chalasani AG, Dhanarajan G, Nema S, Sen R, Roy U. An antimicrobial metabolite from Bacillus sp.: significant activity against pathogenic bacteria including multidrug-resistant clinical strains. Front Microbiol. 2015; 6:1335.

Soltani S, Zirah S, Rebuffat S, Couture F, Boutin Y, Biron E, Subirade M, Fliss I. Gastrointestinal stability and cytotoxicity of bacteriocins from Gram-positive and Gram-negative bacteria: a comparative in vitro study. Front Microbiol. 2022; 12:780355.

Kelley C, Lu S, Parhi A, Kaul M, Pilch DS, Lavoie EJ. Antimicrobial activity of various 4- and 5-substituted 1- phenylnaphthalenes. Eur J Med Chem. 2013; 60:395-409.

Wardana AP, Aminah NS, Fahmi MZ, Kristanti AN, Zahrah HI, Takaya Y, Choudhary MI. Nanoencapsulation of Syzygium polycephalum Extract Using Folate Modified κ-Carrageenan as Vehicles for Pronounced Anticancer Activity. Trop J Nat Prod Res. 2020; 4(11):945-952.

Thant TM, Aminah NS, Kristanti AN, Ramadhan R, Hasna IH, Aung HT, Takaya Y. Coumarins and Carbazole Alkaloid from Clausena excavata Roots and Investigation of their α-glucosidase Inhibitory Activity. Trop J Nat Prod Res. 2020; 4(8):334-337.

Published

2024-02-01

How to Cite

Gultom, E., Harahap, U., Suryanto, D., Sipahutar, H., & Restuati, M. (2024). Antibacterial Activity of Ethanol Extract of the Marine Sponge (<i>Agelas sp</i>) Symbiont <i>Bacillus cereus</i> MH997647 IA5 against <i>Klebsiella pneumoniae</i> ESBL: http://www.doi.org/10.26538/tjnpr/v8i1.37. Tropical Journal of Natural Product Research (TJNPR), 8(1), 5973–5979. Retrieved from https://tjnpr.org/index.php/home/article/view/3410