Antibacterial and Antibiofilm Activities of Ternate Blue Pea (<i>Clitoria ternatea</i>) Flower Extract against <i>Staphylococcus aureus</i>

http://www.doi.org/10.26538/tjnpr/v8i1.40

Authors

  • Hasyrul Hamzah Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda 75124, Indonesia.
  • Sylvia U.T. Pratiwi Department of Pharmaceutical Biology, Faculty of Pharmacy, Gadjah Mada University, Yogyakarta 55281, Indonesia.
  • Amran Nur Department of Pharmacology, Medical Faculty, Khairun University, Ternate 97719, North Maluku, Indonesia.
  • Titik Nuryastuti Microbiology Department, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
  • Virgiawan Y. Pratama Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda 75124, Indonesia.
  • Riza Maulana Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Surakarta 57162, Indonesia.

Keywords:

Periodontal Disease, Staphylococcus aureus, Telang Ternate, Antibiofilm

Abstract

The Ternate Blue Pea, renowned for its antibacterial properties and native to the northern Maluku islands, has been a subject of scientific investigation. Despite previous studies on this plant, its potential antibiofilm activity against Staphylococcus aureus (SA) has remained unexplored. This research aimed to assess the efficacy of Ternate Blue Pea flower extract (TBPE) in inhibiting and eradicating SA biofilm activity. Antibiofilm activity was evaluated using the microtiter broth method, with the minimum biofilm inhibitory concentration (MBIC50) and minimum biofilm eradication concentration (MBEC50) values serving as determinants. The antibiofilm mechanism was elucidated through scanning electron microscopy (SEM). Statistical analysis was conducted using ANOVA (p<0.05). Results revealed that TBPE inhibited SA growth by 85.20% ± 0.01, slightly lower than the control activity of Vancomycin at 88.00% ± 0.01. In the antibiofilm test, TBPE exhibited significant efficacy in inhibiting biofilm during the mid-phase (81.40% ± 0.01) and preventing biofilm formation in the maturation phase (78.14% ± 0.01) of biofilm, whereas Vancomycin demonstrated slightly higher inhibitory activity in both the mid-phase (85.40% ± 0.01) and maturation phase (82.00% ± 0.01) of biofilm. TBPE disrupted the SA biofilm formation by 74.44% ± 0.01, while Vancomycin was marginally more effective with the disruption value of 77.00% ± 0.01. SEM analysis confirmed that TBPE could inhibit and breakdown SA biofilm by damaged the extracellular polymer (EPS) matrix in biofilms. In conclusion, TBPE exhibits promising antibiofilm activity against SA.
Keywords: Antibacterial, 

Author Biographies

Hasyrul Hamzah, Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda 75124, Indonesia.

Indonesian Biofilm Research Collaboration Centre (IBRCC), Farmako Street, Sekip Utara, Yogyakarta 55281, Indonesia.

Amran Nur, Department of Pharmacology, Medical Faculty, Khairun University, Ternate 97719, North Maluku, Indonesia.

Indonesian Biofilm Research Collaboration Centre (IBRCC), Farmako Street, Sekip Utara, Yogyakarta 55281, Indonesia.

Titik Nuryastuti, Microbiology Department, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.

Indonesian Biofilm Research Collaboration Centre (IBRCC), Farmako Street, Sekip Utara, Yogyakarta 55281, Indonesia.

Virgiawan Y. Pratama, Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda 75124, Indonesia.

Indonesian Biofilm Research Collaboration Centre (IBRCC), Farmako Street, Sekip Utara, Yogyakarta 55281, Indonesia.

References

Martínez-García M, Hernández-Lemus E. Periodontal Inflammation and Systemic Diseases: An Overview. Front Physiol 2021; 12: 709438.

Paul O, Arora P, Mayer M, Chatterjee S. Inflammation in Periodontal Disease: Possible Link to Vascular Disease. Front Physiol 2021; 11: 609614.

Janakiram C, Dye BA. A public health approach for prevention of periodontal disease. Periodontol 2000 2020; 84(1): 202–214.

Ko T-J, Byrd KM, Kim SA. The Chairside Periodontal Diagnostic Toolkit: Past, Present, and Future. Diagn Basel Switz 2021; 11(6): 932.

Gholami L, Shahabi S, Jazaeri M, Hadilou M, Fekrazad R. Clinical applications of antimicrobial photodynamic therapy in dentistry. Front Microbiol 2022; 13: 1020995.

Abdulkareem AA, Al-Taweel FB, Al-Sharqi AJB, Gul SS, Sha A, Chapple ILC. Current concepts in the pathogenesis of periodontitis: from symbiosis to dysbiosis. J Oral Microbiol 2023; 15(1): 2197779.

Bhuyan R, Bhuyan SK, Mohanty JN, Das S, Juliana N, Juliana IF. Periodontitis and Its Inflammatory Changes Linked to Various Systemic Diseases: A Review of Its Underlying Mechanisms. Biomedicines 2022; 10(10): 2659.

Raineri EJM, Altulea D, van Dijl JM. Staphylococcal trafficking and infection-from ‘nose to gut’ and back. FEMS Microbiol Rev 2022; 46(1): fuab041.

Campos J, Pires MF, Sousa M, Campos C, da Costa CFFA, Sampaio-Maia B. Unveiling the Relevance of the Oral Cavity as a Staphylococcus aureus Colonization Site and Potential Source of Antimicrobial Resistance. Pathog Basel Switz 2023; 12(6): 765.

Bertolini M, Costa RC, Barão VAR, Villar CC, Retamal-Valdes B, Feres M, Silva Souza JG. Oral Microorganisms and Biofilms: New Insights to Defeat the Main Etiologic Factor of Oral Diseases. Microorganisms 2022; 10(12): 2413.

Colombo APV, do Souto RM, Araújo LL, Espíndola LCP, Hartenbach FARR, Magalhães CB, da Silva Oliveira Alves G, Lourenço TGB, da Silva-Boghossian CM. Antimicrobial resistance and virulence of subgingival staphylococci isolated from periodontal health and diseases. Sci Rep 2023; 13(1): 11613.

Zaatout N. Presence of non-oral bacteria in the oral cavity. Arch Microbiol 2021; 203(6): 2747–2760.

Uruén C, Chopo-Escuin G, Tommassen J, Mainar-Jaime RC, Arenas J. Biofilms as Promoters of Bacterial Antibiotic Resistance and

Tolerance. Antibiot Basel Switz 2020; 10(1): 3.

Chen X, Daliri EB, Kim N, Kim JR, Yoo D, Oh DH. Microbial Etiology and Prevention of Dental Caries: Exploiting Natural Products to Inhibit Cariogenic Biofilms. Pathogens 2020; 9(7): 569.

Tuon FF, Suss PH, Telles JP, Dantas LR, Borges NH, Ribeiro VST. Antimicrobial Treatment of Staphylococcus aureus Biofilms. Antibiotics 2023; 12(1): 87.

Liu X, Yao H, Zhao X, Ge C. Biofilm Formation and Control of Foodborne Pathogenic Bacteria. Molecules 2023; 28(6): 2432.

Schulze A, Mitterer F, Pombo JP, Schild S. Biofilms by bacterial human pathogens: Clinical relevance - development, composition and regulation - therapeutical strategies. Microb Cell Graz Austria 2021; 8(2): 28–56.

Samrot AV, Abubakar Mohamed A, Faradjeva E, Si Jie L, Hooi Sze C, Arif A, Chuan Sean T, Norbert Michael E, Yeok Mun C, Xiao Qi N, Ling Mok P, Kumar SS. Mechanisms and Impact of Biofilms and Targeting of Biofilms Using Bioactive Compounds—A Review. Medicina (Kaunas) 2021; 57(8): 839.

Rizkawati M, Rizkita LD. Potensi Aktivitas Antibakterial Ekstrak Bunga Telang (Clitoria Ternatea): Potential Antibacterial Activity of Telang Flower Extract (Clitoria Ternatea). J Sains Dan Kesehat 2023; 5 (1): 70–77.

Febrianti F, Widyasanti A, Nurhasanah S. Aktivitas Antibakteri Ekstrak Bunga Telang (Clitoria ternatea L.) terhadap Bakteri Patogen: Antibacterial Activity of Telang Flower Extract (Clitoria ternatea L.) against Pathogenic Bacteria. ALCHEMY J Penelit Kim 2022; 18(2): 234–241.

Cahyaningsih E, Yuda PESK, Santoso P. Skrining Fitokimia Dan Uji Aktivitas Antioksidan Ekstrak Etanol Bunga Telang (Clitoria Ternatea L.) Dengan Metode Spektrofotometri Uv-vis: Phytochemical Screening and Antioxidant Activity Test of Ethanol Extract of Telang Flower (Clitoria Ternatea L.) by Uv-vis Spectrophotometric Method. J Ilm Medicam 2019; 5(1): 51–57.

Chabib L, Hamzah H, Rahmah W, Sammulia SF, Setyowati E, Nurfitriani A. Tracking of the Antibiofilm Activities of Lakum Leaf Extract (Causonis trifolia Linn.) Against Staphylococcus aureus. Pak J Biol Sci. 2023; 26(2): 91–100.

Hamzah H, Siregar KAAK, Suffiana Y, Yudhawan I, Nurwijayanto A. Antibacterial and antibiofilm activity of Begonia multangula Blume.

leaf extract against Candida albicans. Food Res 2022; 6 (1): 260–268.

Nuraini P, Puteri MM, Pramesty E. Anti-biofilm Activity of Epigallocatechin gallate (EGCG) against Streptococcus mutans bacteria. Res J Pharm Technol 2021; 14(9): 5019–5023.

Hamzah H, Ukhti Nabilah T, Yudhawan I, Siregar KAAK, Sammulia SF, Fitriani. Investigation And Development Of Anti Polymicrobial Biofilm From Several Essential Oils: A Review. Biointerface Res Appl Chem 2022; 13(2): 103.

Jafaar HJ, Isbilen O, Volkan E, Sariyar G. Alkaloid profiling and antimicrobial activities of Papaver glaucum and P. decaisnei. BMC Res Notes 2021; 14(1): 348.

Shamsudin NF, Ahmed QU, Mahmood S, Ali Shah SA, Khatib A, Mukhtar S, Alsharif MA, Parveen H, Zakaria ZA. Antibacterial Effects of Flavonoids and Their Structure-Activity Relationship Study: A Comparative Interpretation. Molecules 2022; 27(4): 1149.

Tagousop CN, Tamokou J-D-D, Feugap LDT, Harakat D, Voutquenne-Nazabadioko L, Ngnokam D. New Hemisynthetic Oleanane Saponin with Antimicrobial Activities. Adv Biol Chem 2021; 11(1): 1–11.

Ashraf MV, Pant S, Khan MAH, Shah AA, Siddiqui S, Jeridi M, Alhamdi HWS, Ahmad S. Phytochemicals as Antimicrobials: Prospecting Himalayan Medicinal Plants as Source of Alternate Medicine to Combat Antimicrobial Resistance. Pharmaceuticals 2023; 16(6): 881.

Sharma D, Misba L, Khan AU. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist Infect Control 2019; 8: 76.

Karygianni L, Ren Z, Koo H, Thurnheer T. Biofilm Matrixome: Extracellular Components in Structured Microbial Communities. Trends Microbiol 2020; 28(8): 668–681.

Hamzah H, Nuryastuti T, Rahmah W, Chabib L, Syamsul ES, Lestari D, Jabbar A, Pratiwi SUT. Molecular Docking Study of the C-10 Massoia Lactone Compound as an Antimicrobial and Antibiofilm Agent against Candida tropicalis. Sci World J 2023; 2023: 1-10.

Hamzah H, Pratiwi SUT, Hertiani T. Efficacy of Thymol and Eugenol Against Polymicrobial Biofilm. Indones J Pharm 2018; 29(4): 214.

Pratiwi SUT, Hamzah H. Inhibition and Degradation Activity of (Sapindus rarak seeds) ethanol extract against polymicrobial biofilm. Res J Pharm Technol 2020; 13 (11): 5425–5430.

Muhammad MH, Idris AL, Fan X, Guo Y, Yu Y, Jin X, Qiu J, Guan X, Huang T. Beyond Risk: Bacterial Biofilms and Their Regulating Approaches. Front Microbiol 2020; 11: 928.

Nikolic P, Mudgil P. The Cell Wall, Cell Membrane and Virulence Factors of Staphylococcus aureus and Their Role in Antibiotic Resistance. Microorganisms 2023; 11(2): 259.

Published

2024-02-01

How to Cite

Hamzah, H., Pratiwi, S. U., Nur, A., Nuryastuti, T., Pratama, V. Y., & Maulana, R. (2024). Antibacterial and Antibiofilm Activities of Ternate Blue Pea (<i>Clitoria ternatea</i>) Flower Extract against <i>Staphylococcus aureus</i>: http://www.doi.org/10.26538/tjnpr/v8i1.40. Tropical Journal of Natural Product Research (TJNPR), 8(1), 5992–5996. Retrieved from https://tjnpr.org/index.php/home/article/view/3407