Network Pharmacology and In Silico Investigation on Saussurea lappa for Viral Respiratory Diseases http://www.doi.org/10.26538/tjnpr/v8i1.26

Main Article Content

Avin A Fitrianingsih
Dewi Santosaningsih
Susanthy Djajalaksana
Roihatul Muti'ah
Maria I Lusida
Setyawati S Karyono
Sumarno R Prawiro

Abstract

Respiratory viral diseases are prevalently affecting people of all ages, requiring extensive study into herbal medicine as a potential solution. Therefore, this study aimed to identify the Saussurea lappa (S. lappa) compounds and explain the molecular mechanisms against respiratory viral diseases. The molecular mechanisms of the compound against respiratory viral diseases was determined through network pharmacological methods using Cytoscape 3.10.0, GeneCards, OMIM, STRING 11.0, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The interaction of compounds with NFĸB and TNF were analyzed using molecular docking with dexamethasone as a control through PyRx Autodock Vina 9.0 and Biovia Discovery Studio. The results showed that S. lappa compounds activated defense mechanisms against viral infection, impacting genes associated with SARS-CoV-2 disease, and activating NF-κB and NRF2 signaling pathways. The molecular docking results, supporting the network pharmacology finding, indicated that the syrigaresinol compound, with several NF-ĸB binding residues, inhibited the inflammatory pathway by blocking the protein signal. Saussureamine A and C, with lower binding affinities for TNFα, showed higher effectiveness compared to dexamethasone, showing their potential to reduce inflammation. In addition, syrigaresinol and saussureamine A and C showed potential for reducing inflammation. These results showed the potential of S. lappa as an herb for defense against SARS-CoV-2.

Article Details

How to Cite
Fitrianingsih, A. A., Santosaningsih, D., Djajalaksana, S., Muti'ah, R., Lusida, M. I., Karyono, S. S., & Prawiro, S. R. (2024). Network Pharmacology and In Silico Investigation on Saussurea lappa for Viral Respiratory Diseases: http://www.doi.org/10.26538/tjnpr/v8i1.26. Tropical Journal of Natural Product Research (TJNPR), 8(1), 5889-5896. https://tjnpr.org/index.php/home/article/view/3401
Section
Articles
Author Biographies

Avin A Fitrianingsih, Doctoral Program in Medical Science, Faculty of Medicine, Universitas Brawijaya, East Java, 65145, Indonesia

Department of Microbiology, Faculty of Medicine and Health Science, UIN Maulana Malik Ibrahim, Malang, East Java, 65151, Indonesia

Maria I Lusida, Department of Microbiology, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, 60131, Indonesia

Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, 60115, Indonesi

References

Kapoor R, Sharma B, Kanwar SS. Antiviral Phytochemicals: An Overview. Biochem Physiol. 2017;06(02):1-7. Doi:10.4172/2168-9652.1000220

Biswas D, Nandy S, Mukherjee A, Pandey DK, Dey A. Moringa oleifera Lam. and derived phytochemicals as promising antiviral agents: A review. S Afr J Bot. 2020;129:272-282. Doi:10.1016/j.sajb.2019.07.049

Attallah NGM, Kabbash A, Negm WA, Elekhnawy E, Binsuwaidan R. Protective Potential of Saussurea costus (Falc.) Lipsch. Roots against Cyclophosphamide-Induced Pulmonary Injury in Rats and Its In Vitro Antiviral Effect. Pharmaceuticals. 2023;16(2):1-20. Doi:10.3390/ph16020318

El-Far A, Shaheen H, Alsenosy A, El-Sayed Y, Al Jaouni S, Mousa S. Costus speciosus: Traditional uses, phytochemistry, and therapeutic potentials. Pharmacogn Rev. 2018;12(23):1-8. Doi:10.4103/phrev.phrev_29_17

Hassan R, Masoodi MH. Saussurea lappa: A Comprehensive Review on its Pharmacological Activity and Phytochemistry. Curr Tradit Med. 2019;6(1):13-23. Doi:10.2174/2215083805666190626144909

Abdallah EM, Qureshi KA, Ali AMH, Elhassan GO. Evaluation of some biological properties of Saussurea costus crude root extract. Biosci Biotech Res Comm. 2017;10(4):601-611. Doi:10.21786/bbrc/10.4/2

Vincent S, Arokiyaraj S, Saravanan M, Dhanraj M. Molecular Docking Studies on the Anti-viral Effects of Compounds From Kabasura Kudineer on SARS-CoV-2 3CLpro. Front Mol Biosci. 2020;7:1-12. Doi:10.3389/fmolb.2020.613401

Ulbegi Polat H, Serhatli M, Taş Ekiz A. Investigation of the Antiviral Effects of Saussurea lappa Root Extract against SARS-CoV-2 Virus. Mol N

utr Food Res. 2023;67(14):1-10. Doi:10.1002/mnfr.202200804

Ahmad S, Zahiruddin S, Parveen B. Indian Medicinal Plants and Formulations and Their Potential Against COVID-19–Preclinical and Clinical Research. Front Pharmacol. 2021;11(578970):1-34. Doi:10.3389/fphar.2020.578970

Xian Y, Zhang J, Bian Z. Bioactive natural compounds against human coronaviruses: a review and perspective. Acta Pharm Sin B. 2020;10(7):1163-1174. Doi:10.1016/j.apsb.2020.06.002

Chandran U, Patwardhan B. Network ethnopharmacological evaluation of the immunomodulatory activity of Withania somnifera. J Ethnopharmacol. 2017;197:250-256. Doi:10.1016/j.jep.2016.07.080.

Boezio B, Audouze K, Ducrot P, Taboureau O. Network-based Approaches in Pharmacology. Mol Inform. 2017;36(10):1700048. Doi:10.1002/minf.201700048

Mutiah R, Rachmawati E, Fitrianingsih‬ AA, Zahiro SR. Metabolite profiling of anticancer compounds in Saussure lappa based on UPLC-QToFMS/MS. Pharm Educ. 2023;23(4):37-42. Doi:10.46542/pe.2023.234.3742

Li F, Duan J, Zhao M. A network pharmacology approach to reveal the protective mechanism of Salvia miltiorrhiza-Dalbergia odorifera coupled-herbs on coronary heart disease. Sci Rep. 2019;9(1):19343. Doi:10.1038/s41598-019-56050-5

Runfeng L, Yunlong H, Jicheng H. Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2). Pharmacol Res. 2020;156:104761. Doi:10.1016/j.phrs.2020.104761

Zhou P, Zhou R, Min Y, An L-P, Wang F, Du Q-Y. Network Pharmacology and Molecular Docking Analysis on Pharmacological Mechanisms of Astragalus membranaceus in the Treatment of Gastric Ulcer. Seidel V, ed. Evidence-Based Complement Altern Med. 2022;2021:1-11. Doi:10.1155/2022/9007396

Jia C, Pan X, Wang B, Wang P, Wang Y, Chen R. Mechanism Prediction of Astragalus membranaceus against Cisplatin-Induced Kidney Damage by Network Pharmacology and Molecular Docking. Yuan Y, ed. Evidence-Based Complement Altern Med. 2021;2021:1-15. Doi:10.1155/2021/9516726

Luo W, Deng J, He J. Integration of molecular docking, molecular dynamics and network pharmacology to explore the multi‐target pharmacology of fenugreek against diabetes. J Cell Mol Med. 2023;27:1959–1974. Doi:10.1111/jcmm.17787

Alzarea SI, Qasim S, Uttra AM. Network Pharmacology and Molecular Docking Based Prediction of Mechanism of Pharmacological Attributes of Glutinol. Processes. 2022;10(8):1492. Doi:10.3390/pr10081492

Jiang Y, Zhong M, Long F, Yang R, Zhang Y, Liu T. Network Pharmacology-Based Prediction of Active Ingredients and Mechanisms of Lamiophlomis rotata (Benth.) Kudo Against Rheumatoid Arthritis. Front Pharmacol. 2019;10. Doi:10.3389/fphar.2019.01435

Shanmugavelan R, Mohamed Musthafa M. Pharmacokinetics and Molecular Docking Study of Siddha Polyherbal Preparation Shailam Against COVID-19 Mutated s Gene. Trop J Nat Prod Res. 2022;6(4):502-513. Doi:10.26538/tjnpr/v6i4.8

Wang Y, Karki R, Zheng M. Cutting Edge: Caspase-8 Is a Linchpin in Caspase-3 and Gasdermin D Activation to Control Cell Death, Cytokine Release, and Host Defense during Influenza A Virus Infection. J Immunol. 2021;207(10):2411-2416. Doi:10.4049/jimmunol.2100757

Othumpangat S, Noti JD, McMillen CM, Beezhold DH. ICAM-1 regulates the survival of influenza virus in lung epithelial cells during the early stages of infection. Virology. 2016;487:85-94. Doi:10.1016/j.virol.2015.10.005

Mondal A, Dawson AR, Potts GK. Influenza virus recruits host protein kinase C to control assembly and activity of its replication machinery. Elife. 2017;6. Doi:10.7554/eLife.26910

Muhammad M, Hassan TM, Baba SS. Exploring NFĸB pathway as a potent strategy to mitigate COVID-19 severe morbidity and mortality. J Public Health Africa. 2022;13(3). Doi:10.4081/jphia.2022.1679

Adebambo KF, Haji N. Molecular Docking Study of the Binding Interaction of Hydroxychloroquine, Dexamethasone and Other Anti-Inflammatory Drugs with SARS-CoV-2 Protease and SARS-CoV-2 Spikes Glycoprotein. Comput Mol Biosci. 2021;11(02):19-49. Doi:10.4236/cmb.2021.112002

Fadilaturahmah F, Rahayu R, Santoso P. In Silico Study on Anti-inflammatory Effect of Bioactive Compounds of Velvet Bean (Mucuna pruriens) Leaves Against NF-ĸB Activation Pathway. J Sains Farm Klin. 2023;9:168. Doi:10.25077/jsfk.9.sup.168-174.2022

Nayak BK, Kumar A. Activity of Leukotrienes in Inflammation. Eur J Pharm Med Res. 2017;4(3):207-215.

Neufeldt CJ, Cerikan B, Cortese M, Frankish J, Lee J-Y, Plociennikowska A. SARS-CoV-2 infection induces a pro-inflammatory cytokine response through cGAS- STING and NF-kB. bioRxiv. 2020. Doi:https://doi.org/10.1101/2020.07.21.212639

Sohemat AA, Atrooz OM, Farah HS. Erratum: Evaluation of the Anti-inflammatory, Antioxidant, and Protease Inhibitory Activity of the Crude Methanol Extract of Portulaca oleracea. Trop J Nat Prod Res. 2023;7(3):2397-2401. Doi:10.26538/tjnpr/v7i2.15

Su CM, Wang L, Yoo D. Activation of NF-κB and induction of proinflammatory cytokine expressions mediated by ORF7a protein of SARS-CoV-2. Sci Rep. 2021;11(1):1-12. Doi:10.1038/s41598-021-92941-2