Purification of Trypsin from Sardine (<i>Sardina pilchardus</i>) Viscera and Its Application in Preparation of Antioxidative Fish Protein Hydrolysates



  • Laila Manni Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, P. O. Box 2202, Imouzzer Road Fez, Morocco 
  • Nouhaila Zouine Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, P. O. Box 2202, Imouzzer Road Fez, Morocco 
  • Ibtissam Ouahidi High Institute of Nursing and Technical Health (ISPITS). Ministry of Health, Fez, Morocco laila.manni@usmba.ac.ma
  • Meryem Bouraqqadi Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, P. O. Box 2202, Imouzzer Road Fez, Morocco 
  • Samir Ananou Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, P. O. Box 2202, Imouzzer Road Fez, Morocco 


Antioxidant activity, Hydrolysates, Purification, Alkaline trypsin, Sardine by-products


A substantial quantity of solid fish by-products is generated during the fish processing. These by-products offer an intriguing opportunity as a source of high added-value compounds, including digestive proteases. Indeed, fish trypsin is one of the most beneficial and useful biomolecules that can be recovered from fish wastes. Additionally, fish protein hydrolysates have emerged as a valuable and abundant source of high-quality bioactive molecules, which can be efficiently recovered through enzymatic hydrolysis. This study aims to provide valuable insights into the extraction and utilization of fish trypsin, as well as protein hydrolysates derived from fish by-products, specifically those from sardine (Sardina pilchardus). Firstly, trypsin from the viscera of sardine was purified with an approximate fourteen-fold increase in specific activity using ammonium sulfate precipitation, followed by DEAE-cellulose chromatography. SDS–PAGE analysis revealed a single band of approximately 27 kDa. Interestingly, the purified enzyme exhibited significant features, including an optimum temperature of 60 °C, and high stability at low temperatures, retaining respectively 100% and 64% of its initial activity at 20 °C and 50 °C. The enzyme also demonstrated excellent stability at pH range 5–10 with an optimum at pH 8. Furthermore, it maintained 40% of its enzymatic activity at the pH 11. The purified enzyme was inhibited by benzamidine and PMSF and partially inhibited by EDTA.
Subsequently, four protein hydrolysates (H1, H2, H3, and H4) were prepared from sardine, using purified trypsin and other bacterial proteases. All hydrolysates exhibited noteworthy antioxidant properties in vitro, indicating their promising potential for application in functional foods as natural preservatives.


Yan N, Chen X. Sustainability: Don't waste seafood waste. Nat. 2015; 524: 155–157. Doi: 10.1038/524155a.

Nawaz A, Li E, Irshad S, Xiong Z, Xiong H, Shahbaz HM, Siddique F. Valorization of fisheries by-products: Challenges and technical concerns to food industry. Trends Food Sci Technol. 2020; Doi:10.1016/j.tifs.2020.02.022.

Thirukumaran R, Anu Priya VK, Krishnamoorthy S, Ramakrishnan P, Moses JA; Anandharamakrishnan C. Resource recovery from fish waste: Prospects and the usage of intensified extraction technologies. Chem. 2022; 299: 134361. Doi:10.1016/j.chemosphere.2022.134361.

Ghaly A. Microbial and Biochemical Technology Fish Processing Wastes as a Potential Source of Proteins, Amino Acids and Oils. Crit Rev J Microb Biochem Technol. 2013; 54172(5): 107–129. Doi: 10.4172/1948- 5948.1000110.

Manni L, Ghorbel-Bellaaj O, Jellouli K, Younes I, Nasri M. Extraction and characterization of chitin, chitosan, and protein hydrolysates prepared from shrimp waste by treatment with crude protease from Bacillus cereus SV1. Appl Biochem Biotech. 2010; 162(2): 345-357.Doi: 10.1007/s12010-009-8846-y.

Manni L, Jellouli K, Ghorbel-Bellaaj O, Agrebi R, Haddar A, Sellami-Kamoun A, Nasri M. An Oxidant- and Solvent-Stable Protease Produced by Bacillus cereus SV1: Application in the Deproteinization of Shrimp Wastes and as a Laundry Detergent Additive. Appl Biochem Biotechnol. 2010; 160: 2308-2321. Doi:10.1007/s12010-009-8703-z

Ideia P, Pinto J, Ferreira F, Figueiredo L, Spínola V, Castilho PC. Fish Processing Industry Residues: A Review of Valuable Products Extraction and Characterization Methods. Waste Bio Val. 2019; 11: 3223–3246. Doi: 10.1007/s12649-019-00739-1.

Mathew GM, Mathew DC, Sukumaran RK, Sindhu R, Huang CC, Binod P, Pandey A. Sustainable and eco-friendly strategies for shrimp shell valorization. Envir Poll.2020; 115656. doi:10.1016/j.envpol.2020.115656.

Šimat V. Nutraceuticals and Pharmaceuticals from Marine Fish and Invertebrates. Mar Drugs. 2021; 19(7): 401. Doi: 10.3390/md19070401.

Guo CH, Hsia S, Chung CH, Lin YC, Shih MY, Chen PC, Hsu GSW, Fan CT, Peng CL. Combination of fish oil and selenium enhances anticancer efficacy and targets multiple signaling pathways in anti-VEGF agent treated-TNBC tumor-bearing mice. Mar Drug. 2021;19: 193. Doi: 10.3390/md19040193.

Nag M, Lahiri D, Dey A, Sarkar T, Pati S, Joshi, S, Bunawan H, Mohammed A, Edinur HA, Ghosh S, Ray RR. Seafood Discards: A Potent Source of Enzymes and Biomacromolecules with Nutritional and Nutraceutical Significance. Front Nutr. 2022; 9: 879929. Doi: 10.3389/fnut.2022.879929.

Espinales C, Romero-Peña M, Calderón G., Vergara K, Cáceres PJ, Castillo P. Collagen, protein hydrolysates and chitin from by-products of fish and shellfish: An overview. Heliyon. 2023; 9(4):e14937. Doi: 10.1016/j.heliyon.2023.e14937.

Caruso G. Fishery wastes and by-products: a resource to be valorized. J Fish Sci. 2016; 10 (1), 80-83.

Gudmundsdóttir A, Pálsdóttir, HM. Atlantic cod trypsins: from basic research to practical applications. Mar Biotechnol (NY). 2005; 7(2):77-88. Doi: 10.1007/s10126-004-0061-9.

Balti R, Barkia A, Bougatef A, Ktari N, Nasri M. A heat-stable trypsin from the hepatopancreas of the cuttlefish (Sepia officinalis): Purification and characterisation. Food chem. 2009; 113:146-154. Doi: 10.1016/j.foodchem.2008.07.059.

Bougatef A, Balti R, Nasri R, Jellouli K, Souissi N, Nasri M. Biochemical properties of anionic trypsin acting at high concentration of NaCl purified from the intestine of a carnivorous fish: smooth hound (Mustelus mustelus). J Agric Food Chem. 2010; 58: 5763–5769. Doi: 10.1021/jf100534a.

Bougatef A. Trypsins from fish processing waste: characteristics and biotechnological applications—comprehensive review. J Clean Prod. 2013; 57: 257–265. Doi:10.1016/j.jclepro.2013.06.005.

Bkhairia I, Ben Khaled H, Ktari N, Miled N, Nasri M, Ghorbel S. Biochemical and molecular characterization of a new alkaline trypsin from Liza aurata: Structural features explaining thermal stability. Food Chem. 2016; 196: 1346-54. Doi: 10.1016/j.foodchem.2015.10.058.

Al-Ghanayem AA, Joseph B. Current prospective in using cold-active enzymes as eco-friendly detergent additive. Appl Microbiol Biotechnol. 2020; 104(7): 2871-2882. Doi: 10.1007/s00253-020-10429-x.

Weiss FU, Halangk W, Lerch MM. New advances in pancreatic cell physiology and pathophysiology. Best Pract Res Clin Gastroenterol. 2008; 22: 3–15. Doi: 10.1016/j.bpg.2007.10.017.

Jesús-de la Cruz K, Álvarez-González CA, Peña E, Morales-Contreras JA, Ávila-Fernández Á. Fish trypsins: potential applications in biomedicine and prospects for production. Biotech. 2018; 8(4): 186. Doi: 10.1007/s13205-018-1208-0.

Araujo J, Sica P, Costa C, Márquez MC. Enzymatic hydrolysis of fish waste as an alternative to produce high value-added products. Waste Biom Val. 2021; 12(2): 847-855. Doi:10.1007/s12649-020-01029-x.

Ktari N, Khaled HB, Nasri R, Jellouli K, Ghorbel S, Nasri M. Trypsin from zebra blenny (Salaria basilisca) viscera: Purification, characterization and potential application as a detergent additive. Food Chem. 2012; 130: 467–474. Doi: 10.1016/j.foodchem.2011.07.015.

Zhang W, Wu J, Xiao J, Zhu M, Yang H. Compatibility and Washing Performance of Compound Protease Detergent. Appl Sci. 2022; 12: 150. Doi: 10.3390/app12010150.

Sowmya R, Ravikumar TM, Vivek R, Rathinaraj K, Sachindra NM. Optimization of enzymatic hydrolysis of shrimp waste for recovery of antioxidant activity rich protein isolate. J Food Sci Technol. 2014; 51(11): 3199-207. Doi: 10.1007/s13197-012-0815-8.

Younes I, Nasri R, Bkhairia I, Jellouli K, Nasri M. New proteases extracted from red scorpionfish (Scorpaena scrofa) viscera: characterization and application as a detergent additive and for shrimp waste deproteinization. Food Bioprod Proc. 2015; 94: 453–462. Doi:10.1016/j.fbp.2014.06.003.

Poonsin T, Simpson BK, Benjakul S,Visessanguan W, Yoshida A, Klomklao Y. Albacore tuna spleen trypsin: Potential application as laundry detergent additive and in carotenoprotein extraction from Pacific white shrimp shells. Biocat Agric Biotechnol. 2019; 17: 638-646. Doi:10.1016/j.bcab.2019.01.013.

Villamil O, Váquiro H, Solanilla JF. Fish viscera protein hydrolysates: Production, potential applications and functional and bioactive properties. Food Chem. 2017; 224:160-171. Doi:10.1016/j.foodchem.2016.12.057.

Song Z, Liu H, Chen L, Chen L, Zhou C, Hong P, Deng C. Characterization and comparison of collagen extracted from the skin of the Nile tilapia by fermentation and chemical pretreatment. Food Chem. 2021; 340: 128139. Doi: 10.1016/j.foodchem.2020.128139.

Mishra N, Gupta E, Walag AMP, Kharwar RN, Singh P, Mishra P.A Review of Marine Natural Product Resources with Potential Bioactivity Against SARS-COV-2. Trop J Nat Prod Res. 2023; 7(1):2093-2103. Doi : 10.26538/tjnpr/v7i1.2

López-Pedrouso M, Lorenzo JM, Cantalapiedra J, Zapata C, Franco JM, Franco D. Aquaculture and by-products: Challenges and opportunities in the use of alternative protein sources and bioactive compounds. Adv Food Nutr Res. 2020; 92:127-185. doi: 10.1016/bs.afnr.2019.11.001.

Idowu AT, Igiehon OO, Idowu S, Olatunde OO, Benjakul S. Bioactivity Potentials and General Applications of Fish Protein Hydrolysates. Int J Pept Res Ther. 2021; 27: 109–118. Doi: 10.1007/s10989-020-10071-1.

Moya Moreira TF, Gonçalves OH, Leimann F, Ribeiro RP. Fish Protein Hydrolysates: Bioactive Properties, Encapsulation and New Technologies for Enhancing Peptides Bioavailability. Curr Pharm Des. 2023; 29(11): 824-836. Doi: 10.2174/1381612829666230110141811.

Halim NRA, Yusof HM, Sarbon NM. Functional and bioactive properties of fish protein hydolysates and peptides: A comprehensive review. Trends Food Sci Technol. 2016; 51: 24-33. Doi:10.1016/j.tifs.2016.02.007.

Sila A, Bougatef A. Antioxidant peptides from marine by-products: Isolation, identification and application in food systems. A review. J Funct Foods. 2016; 21: 10-26. Doi:10.1016/j.jff.2015.11.007.

Nasri M. Protein Hydrolysates and Biopeptides: Production, Biological Activities, and Applications in Foods and Health Benefits. A Review. Adv Food Nutr Res. 2017; 81: 109-159. Doi: 10.1016/bs.afnr.2016.10.003.

Zamora-Sillero J, Gharsallaoui A, Prentice C. Peptides from Fish By-product Protein Hydrolysates and Its Functional Properties: an Overview. Mar Biotechnol (NY). 2018; 20(2): 118-130. doi: 10.1007/s10126-018-9799-3.

Borges S, Odila J, Voss G, Martins R, Rosa A, Couto JA, Almeida A, Pintado, M. Fish By-Products: A Source of Enzymes to Generate Circular Bioactive Hydrolysates. Mol. 2023; 28(3): 1155. Doi: 10.3390/molecules28031155.

Naseem S, Imam A, Rayadurga AS, Ray A, Suman SK. Trends in fisheries waste utilization: a valuable resource of nutrients and valorized products for the food industry. Crit Rev Food Sci Nutr. 2023; 15: 1-21. Doi: 10.1080/10408398.2023.2211167.

Yu D, Cui S, Chen L, Zheng S, Zhao D, Yin X, Yang F, Chen J. Marine-Derived Bioactive Peptides Self-Assembled Multifunctional Materials: Antioxidant and Wound Healing. Antiox. 2023; 12(6):1190. Doi: 10.3390/antiox12061190.

Dassarma B, Nandi DK, Gangopadhyay S, Samanta S. Hepatoprotective effect of food preservatives (Butylated hydroxyanisole, Butylated hydroxytoluene) on carbon tetrachloride-induced hepatotoxicity in rat. Toxicol Rep. 2018; 5 : 31–37. Doi:10.1016/j.toxrep.2017.12.009.

Najafian L. A review of bioactive peptides as functional food ingredients: mechanisms of action and their applications in active packaging and food quality improvement. Food Funct. 2023; 14: 5835-5857. Doi: 10.1039/D3FO00362K .

Wu R, Wu C, Liu D, Yang X, Huang J, Zhang J, Liao B, He H, Li H. Overview of antioxidant peptides derived from marine resources: the sources, characteristic, purifcation, and evaluation methods. Appl Biochem Biotechnol. 2015; 176: 1815–1833. Doi:10.1007/s12010-015-1689-9.

Rivero-Pino F, Espejo-Carpio FJ, Guadix EM. Evaluation of the bioactive potential of foods fortified with fish protein hydrolysates. Food Res Int. 2020; 137: 109572. Doi:10.1016/j.foodres.2020.109572.

Phetchthumrongchai T, Tachapuripunya V, Chintong S, Roytrakul S, E-kobon, T, Klaypradit W. Properties of Protein Hydrolysates and Bioinformatics Prediction of Peptides Derived from Thermal and Enzymatic Process of Skipjack Tuna (Katsuwonus pelamis) Roe. Fish. 2022; 7: 255. Doi: 10.3390/fishes7050255.

Nguyen HT, Bao HND, Dang HTT, Tómasson T, Arason S, Gudjónsdóttir M. Protein Characteristics and Bioactivity of Fish Protein Hydrolysates from Tra Catfish (Pangasius hypophthalmus) Side Stream Isolates. Foods. 2022; 11(24):4102. Doi: 10.3390/foods11244102.

Bougatef A, Souissi N, Fakhfakh N, Ellouz-Triki Y, Nasri M. Purification and characterization of trypsin from the viscera of sardine (Sardina pilchardus). Food Chem. 2007; 102:343–350. Doi:10.1016/j.foodchem.2006.05.050.

Kruger NJ. The Bradford method for protein quantitation. In: Walker, J.M. (eds) The Protein Protocols Handbook. Springer Protocols Handbooks. Humana Press, Totowa, NJ. 2009. Doi:10.1007/978-1-59745-198-7_4.

Kembhavi AA, Kulkarni A, Pant A. Salt-tolerant and thermostable alkaline protease from Bacillus subtilis NCIM No. 64. Appl Biochem Biotechnol. 1993; 38: 83–92. Doi: 10.1007/BF02916414.

Manni L, Misbah A, Zouine N, Ananou S. Biochemical Characterization of a Novel Alkaline and Detergent Stable Protease from Aeromonas veronii OB3. Microbiol Biotechnol Lett. 2020; 48(3): 358-365. Doi:10.4014/mbl.1912.12015.

Bougatef A, Nedjar-Arroume N, Manni L, Ravallec R, Barkia A, Guillochon D, Nasri M. Purification and identification of novelantioxidant peptides fromenzymatichydrolysates of sardinelle (Sardinella aurita) by-products proteins. Food Chem. 2009; 118(3): 559–565. Doi:10.1016/j.foodchem.2009.05.021.

Jeddi M, Fikri-Benbrahim K, El Hachlafi N, Benkhaira N, Aboussemdai A, Ouaritini ZB. Chemical Composition of Thymus vulgaris, Origanum compactum and Vetiveria zizanoides Essential oils and their Antibacterial and Antioxidant Activities. Trop J Nat Prod Res. 2023; 7(1):2244-2250. Doi : 10.26538/tjnpr/v7i1.24

El Hachlafi N, Mrabti HN, Al-Mijalli SH, Jeddi M, Abdallah EM, Benkhaira N, Hadni H, Assaggaf H, Qasem A, Goh KW, Al-Farga A, Bouyahya A, Fikri-Benbrahim K. Antioxidant, Volatile Compounds; Antimicrobial, Anti-Inflammatory, and Dermatoprotective Properties of Cedrus atlantica (Endl.) Manetti Ex Carriere Essential Oil: In Vitro and In Silico Investigations. Mol. 2023; 28: 5913. Doi: 10.3390/molecules28155913.

Friedman I, Fernández-Gimenez A. State of knowledge about biotechnological uses of digestive enzymes of marine fishery resources: A worldwide systematic review. Aquac Fish. 2023. Doi:10.1016/j.aaf.2023.01.002.

Klomklao S, Benjakul S. Two trypsin isoforms from albacore tuna (Thunnus alalunga) liver: Purification and physicochemical and biochemical characterization. Int J Biol Macromol. 2018; 107: 1864–1870. Doi:10.1016/j.ijbiomac.2017.10.0.

Ben Khaled H, Jellouli K, Souissi N, Ghorbel S, Barkia A, Nasri M. Purification and characterization of three trypsin isoforms from viscera of sardinelle (Sardinella aurita). Fish Physiol Biochem. 2011; 37(1): 123-133. Doi: 10.1007/s10695-010-9424-5.

Lu BJ, Zhou LG, Cai QF, Hara K, Maeda A, Su WJ, Cao MJ. Purification and characterisation of trypsins from the pyloric caeca of mandarin fish (Siniperca chuatsi). Food Chem. 2008; 110(2): 352–360. Doi:10.1016/j.foodchem.2008.02.0.

El Hadj Ali N, Hmidet N, Ghorbel-Bellaaj O, Fakhfakh-Zouari N, Bougatef A, Nasri M. Solvent-stable digestive alkaline proteinases from striped seabream (Lithognathus mormyrus) viscera: characteristics, application in the deproteinization of shrimp waste, and evaluation in laundry commercial detergents. Appl. Biochem. Biotechnol. 2011; 164: 1096-1110. Doi: 10.1007/s12010-011-9197-z.

Namjou F, Yeganeh S, Madani R, Ouraji H. Extraction, Purification, and Characterization of Trypsin Obtained from the Digestive System of Yellowfin Seabream (Acanthopagrus latus). Arch Razi Inst. 2019; 74(4):405-411. Doi: 10.22092/ari.2018.122854.1229.

Dos Santos CWV, Da Costa Marques ME, De Araujo Tenorio H, Carvalho De Miranda E, Vieira Pereira HJ. Purification and characterization of trypsin from Luphiosilurus alexandri pyloric cecum. Biochem Biophys Rep. 2016; 8: 29–33. Doi:10.1016/j.bbrep.2016.08.003.

Khandagale AS, Mundodi L, Sarojini BK. Isolation and characterization of trypsin from fish viscera of oil sardine (Sardinella longiceps). Int J Fish Aquat. Stud. 2017; 5: 33–37.

Candiotto FB, Freitas-Júniorb ACV, Neric RCA, Bezerrac RS, Rodriguesd RV, Sampaiod L.A, Tesser MB. Characterization of digestive enzymes from captive Brazilian flounder Paralichthys orbignyanus. Braz J Biol. 2018 ; 78 (2): 281-288. Doi:10.1590/1519-6984.06616.

Ribeiro Cardoso dos Santos DM, Victor dos Santos CW, Barros de Souza C, Sarmento de Albuquerque F, Marcos dos Santos Oliveira J, Vieira Pereira HJ. Trypsin purified from Coryphaena hippurus (common dolphinfish): Purification, characterization, and application in commercial detergents. Biocat Agric Biotechnol. 2020; 25: 101584. Doi:10.1016/j.bcab.2020.101584.

Yang Z, Huang Z, Wu Q, Tang X, Huang Z. Cold-Adapted Proteases: An Efficient and Energy-Saving Biocatalyst. Int J Mol Sci. 2023; 24(10): 8532. Doi: 10.3390/ijms24108532.

Villalba-Villalba A, Ríos EM, Brauer JM, Yañez FJ. Trypsin from jumbo squid (Dosidicus gigas) hepatopancreas: Purification and characterization. Interc. 2017; 42: 168-174. https://www.redalyc.org/articulo.oa?id=33950011005.

Klomklao S, Benjakul S, Visessanguan W. Comparative studies on proteolytic activity of spleen extracts from three tuna species commonly used in Thailand. J Food Biochem. 2004; 28: 355–372. Doi:10.1111/j.1745-4514.2004.05203.x.

Zamani A, Khajavi M, Abedian Kenari A, Haghbin Nazarpak M, Solouk A, Esmaeili M, Gisbert E. Physicochemical and Biochemical Properties of Trypsin-like Enzyme from Two Sturgeon Species. Anim. 2023; 13(5): 853. Doi: 10.3390/ani13050853.

Ktari N, Khaled HB, Younes I, Bkhairia I, Mhamdi S, Hamza I, Nasri M. Zebra blenny (Salaria basilisca) viscera as a source of solvent-stable proteases: characteristics, potential application in the deproteinization of shrimp wastes and evaluation in liquid laundry commercial detergents. J Food Sci Technol. 2014; 51(11): 3094-103. Doi: 10.1007/s13197-012-0817-6.

Elias RJ, Kellerby SS, Decker EA. Antioxidant activity of proteins and peptides. Crit Rev Food Sci Nutr. 2008; 48(5): 430-41. Doi: 10.1080/10408390701425615.

Yehye WA, Rahman NA, Ariffin A, Abd Hamid SB, Alhadi AA, Kadir FA, Yaeghoobi M. Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): a review. Eur J Med Chem. 2015; 101: 295-312. Doi: 10.1016/j.ejmech.2015.06.026.

Tadesse SA, Emire SA. Production and processing of antioxidant bioactive peptides: A driving force for the functional food market. Heliyon. 2020. 6(8):e04765. Doi:10.1016/j.heliyon.2020.e04765.

Chi CF, Wang B, Wang YM, Zhang B, Deng SG. Isolation and characterization of three antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon eptentrionalis) heads. J Funct Foods. 2015; 12:1-10. Doi:10.1016/j.jff.2014.10.027.

You L, Zhao M, Liu RH. Regenstein JM. Antioxidant and antiproliferative activities of loach (Misgurnus anguillicaudatus) peptides prepared by papain digestion. J Agric Food Chem. 2011; 59(14): 7948-53. Doi: 10.1021/jf2016368.

Noman A, Wang Y, Zhang C, Candiotto FB, Freitas-Júniorb ACV, Neric RCA, Bezerrac RS, Rodriguesd RV, Sampaiod LA, Tesser MB. Characterization of digestive enzymes from captive Brazilian flounder Paralichthys orbignyanus. Braz J Biol. 2018; 78 (2): 281-288. Doi: 10.1590/1519-6984.06616.

Prior R, Xianli W, Schaich K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J Agric Food Chem. 2005; 8(53): 4290-302. Doi: 10.1021/jf0502698.

Barkia A, Bougatef A, Ben Khaled H, Nasri, M. Antioxidant activities of sardinelle heads and/or viscera protein hydrolysates prepared by enzymatic treatment. J Food Biochem. 2010; 34: 303–320. Doi:10.1111/j.1745-4514.2009.00331.x.

García-Moreno PJ, Batista I, Pires C, Bandarra NM, Espejo-Carpio FJ, Guadix, A, Guadix EM. Antioxidant activity of protein hydrolysates obtained from discarded Mediterranean fish species. Food Res Int. 2014; 65: 469–476. Doi:10.1016/j.foodres.2014.03.061.

Vieira E, Ferreira I. Antioxidant and antihypertensive hydrolysates obtained from by-products of cannery sardine and brewing ndustries, Int J Food Prop. 2017; 20(3): 662-673. Doi: 10.1080/10942912.2016.1176036.



How to Cite

Manni, L., Zouine, N., Ouahidi, I., Bouraqqadi, M., & Ananou, S. (2024). Purification of Trypsin from Sardine (<i>Sardina pilchardus</i>) Viscera and Its Application in Preparation of Antioxidative Fish Protein Hydrolysates: http://www.doi.org/10.26538/tjnpr/v8i1.25. Tropical Journal of Natural Product Research (TJNPR), 8(1), 5881–5888. Retrieved from https://tjnpr.org/index.php/home/article/view/3400