Phytochemical Analysis, Antibacterial and Antioxidant Activities of Leaf Extracts of Strychnos Innocua Del.

doi.org/10.26538/tjnpr/v6i6.24

Authors

  • Rachel G. Ayo Department of Chemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
  • Jonathan I Achika Department of Chemistry, Federal University Lokoja, Kogi State, Nigeria
  • Olubunmi O. Bolarin-Akinwande Department of Chemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
  • Dollapo Fawole Department of Chemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria

Keywords:

Antimicrobial activity, Antioxidant, Phytochemical analysis, Secondary metabolites, Strychnos innocua, 2, 2-diphenyl-1-picryl hydrazyl radical.

Abstract

Strychnos innocua is a shrub, or small tree which grows up to 10 m tall. It belongs to the family Loganiaceae and is often straight-stemmed. The root decoction is taken as a remedy for gonorrhoea, and the fresh roots extracts are used to treat snakebite. The aim of the study was to use established methods to assess the phytochemical content, antibacterial, and antioxidant properties of hexane, chloroform, ethyl acetate, and methanol extracts of Strychnos innocua leaves. All of the extracts contained flavonoids, alkaloids, tannins, terpenoids, and saponins. The ethyl acetate extract yielded flavonoids and tannins (3.4 percent and 13.8 percent, respectively). In comparison to the other extracts, the methanol extract had the highest levels of phenolic (10.44%) and saponins (4.2%). The methanol extract has the highest alkaloid concentration (6.0%). With a mean zone of inhibition of 11 to 18 mm, the extracts were effective against Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Bacillus subtilis, Salmonella typhi, and Escherichia coli. The minimal inhibitory and bactericidal concentrations  were 3.125 and 12.50 g/mL, respectively. At 250 g/mL, the antioxidant activity of hexane, chloroform, ethyl acetate, and methanol extracts were 59.2, 56.1, 88.8, and 91.3%, respectively. When compared to ascorbic acid, the ethyl acetate extract exhibits a reductive potential of 0.91nm (1.3 nm). Finally, the extracts of S. innocua contained a variety of phytochemicals, showed significant antibacterial and antioxidant activities 

         Views | PDF Download | EPUB Download: 138 / 61 / 0

References

Burkil HM. The useful plants of West Africa, Family Royal Botanic Gardens.Kew 4:1994. 405 p.

De Ancos B, Rodrigo MJ, Sánchez-Moreno C, Cano MP, Zacarías L. Effect of high-pressure processing applied as pretreatment on carotenoids, flavonoids and vitamin C in juice of the sweet oranges' Navel'and the red-fleshed'Cara Cara'. Food Res Int. 2020; 132:109105.

Sies H, Belousov VV, Chandel NS, Davies MJ, Jones DP, Mann E, Murphy MP, Yamamoto M, Winterbourn C. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat Rev Mol Cell Biol. 2022; 21:1-7.

Pisoschi AM, Pop A, Iordache F, Stanca L, Predoi G, Serban AI. Oxidative stress mitigation by antioxidants-an overview on their chemistry and influences on health status. Eur J Med Chem. 2021; 209:112891.

Mangoale RM and Afolayan AJ. Comparative phytochemical constituents and antioxidant activity of wild and cultivated Alepidea amatymbica Eckl & Zeyh. BioMed Res Int. 2020; 2020:13.

Barbieri R, Coppo E, Marchese A, Daglia M, Sobarzo-Sánchez E, Nabavi SF, Nabavi SM. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol Res. 2017; 196:44-68.

Laraib S, Sharif S, Bibi Y, Nisa S, Aziz R, Qayyum A. Phytochemical analysis and some bioactivities of leaves and fruits of Myrsine africana linn. Arab J Sci Eng. 2021; 46(1):53-63.

Ali SS, Ahsan H, Zia MK, Siddiqui T, Khan FH. Understanding oxidants and antioxidants: Classical team with new players. J Food Biochem. 2020; 44(3):e13145.

Singh A, Kukreti R, Saso L, Kukreti S. Oxidative stress: a key modulator in neurodegenerative diseases. Mol. 2019; 24(8):1583.

Hunt EJ, Lester CE, Lester EA, Tackett RL. Effect of St. John's wort on free radical production. Life Sci. 2001; 69(2):181-90.

Ayukekbong JA, Ntemgwa M, Atabe AN. The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrob Resist Infect Contr. 2017; 6(1):1-8.

Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, Nisar MA, Alvi RF, Aslam MA, Qamar MU, Salamat MK. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018; 11:1645.

Bhatia P, Sharma A, George AJ, Anvitha D, Kumar P, Dwivedi VP, Chandra NS. Antibacterial activity of medicinal plants against ESKAPE: An update. Heliyon. 2021; 7(2):e06310.

Kamli MR, Sharaf AA, Sabir JS, Rather IA. Phytochemical Screening of Rosmarinus officinalis L. as a Potential Anticholinesterase and Antioxidant–Medicinal Plant for Cognitive Decline Disorders. Plants. 2022; 11(4):514.

Alqethami A and Aldhebiani AY. Medicinal plants used in Jeddah, Saudi Arabia: phytochemical screening. Saudi J Biol Sci. 2021; 28(1):805-812.

Farag RS, Abdel-Latif MS, Abd El Baky HH, Tawfeek LS. Phytochemical screening and antioxidant activity of some medicinal plants’ crude uices. Biotechnol Rep. 2020; 28:e00536.

Panchal P and Parvez N. Phytochemical analysis of medicinal herb (Ocimum sanctum). International Journal of Nanomaterials, Nanotechnol Nanomed. 2019; 5(2):008-011.

Akhtar N and Mirza B. Phytochemical analysis and comprehensive evaluation of antimicrobial and antioxidant properties of 61 medicinal plant species. Arab J Chem. 2018; 11(8):1223-1235.

Yadav R, Khare RK, Singhal A. Qualitative phytochemical screening of some selected medicinal plants of shivpuri district (mp). Int J Life Sci Res. 2017; 3(1):844-847.

Kumari P, Kumari C, Singh PS. Phytochemical screening of selected medicinal plants for secondary metabolites. Int J Life Sci Res. 2017; (4):1151-1157.

Cascant MM, Sisouane M, Tahiri S, Krati ME, Cervera ML, Garrigues S, De la Guardia M. Determination of total phenolic compounds in compost by infrared spectroscopy. Talanta. 2016; 153:360-365.

Harborne JB. Phytochemical methods. Chapman and Hall Ltd., London. 1998. 100-200 p.

Kołodziej B, Sęczyk Ł, Sugier D, Kędzia B, Chernetskyy M, Gevrenova R, Henry M. Determination of the yield, saponin content and profile, antimicrobial and antioxidant activities of three Gypsophila species. Ind Crops Prod. 2019; 138:111422.

Jakimiuk K, Strawa JW, Granica S, Locatelli M, Tartaglia A, Tomczyk M. Determination of flavonoids in selected Scleranthus species and their anti-collagenase and antioxidant potential. Mol. 2022; 27(6):2015.

Iamkeng S, Santibenchakul S, Sooksawat N. Potential of Maranta arundinacea residues for recycling: Analysis of total phenolic, flavonoid, and tannin contents. Biodivers J BiolDivers. 2022; 23(3):1204-1210.

Vollekova A, Košťálová D, Sochorova R. Isoquinoline alkaloids fromMahonia aquifolium stem bark are active against Malassezia spp. Folia Microbiol. 2001; 46(2):107-111.

Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008; 3(2):163-175.

Baliyan S, Mukherjee R, Priyadarshini A, Vibhuti A, Gupta A, Pandey RP, Chang CM. Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Mol. 2022; 27(4):1326.

Zhou N, Pan F, Ai X, Tuersuntuoheti T, hao L, Zhao L, Wang Y. Preparation, characterization and antioxidant activity of sinapic acid grafted chitosan and its application with casein as a nanoscale delivery system for black rice anthocyanins. Int J Biol Macromol. 2022; 210:33-43.

Ekwueme FN, Nwodo OF, Joshua PE, Nkwocha C, Eluka PE. Qualitative and quantitative phytochemical screening of the aqueous leaf extract of Senna mimosoides: Its effect in in vivoleukocyte mobilization induced by inflammatory stimulus. Int J Curr Microbiol Appl Sci. 2015; 4(5):1176-1188.

Prabhavathi RM, Prasad MP, Jayaramu M. Studies on qualitative and quantitative phytochemical analysis of Cissus quadrangularis. Adv Appl Sci Res. 2016; 7(4):11-17.

Wang H, Lu Y, Chen J, Li J, Liu S. Subcritical water extraction of alkaloids in Sophora flavescens Ait. and determination by capillary electrophoresis with field-amplified sample stacking. J Pharm Biomed Anal. 2012; 58:146-151.

Yao Y, Lin G, Xie Y, Ma P, Li G, Meng Q, Wu T. Preformulation studies of myricetin: a natural antioxidant flavonoid. Die Pharmazie-An Int J Pharm Sci. 2014; 69(1):19-26.

Falbe J and Regitz M. CD RO¨MPP Chemie Lexikon, Version 1.0, GeorgThieme, Stuttgart, Germany. 1995. 32 p.

Ahmad IM and Wudil AM. Phytochemical screening and toxicological studies of aqueous stem bark extract of Anogeissus leiocarpus in rats. Asian J Sci Res. 2013; 6(4):781.

Haslam E. Natural polyphenols (vegetable tannins) as drugs: possible modes of action. J Nat Prod. 1996; 59(2):205-215.

Shi QI, Hui SU, Zhang AH, Hong-Ying XU, Guang-Li YA, Ying HA, Xi-Jun WA. Natural alkaloids: basic aspects, biological roles, and future perspectives. Chin J Nat Med. 2014; 12(6):401-406.

Bagrov AY, Shapiro JI, Fedorova OV. Endogenous cardiotonic steroids: physiology, pharmacology, and novel therapeutic targets. Pharmacol Rev. 2009; 61(1):9-38.

Alves TM, Silva AF, Brandão M, Grandi TS, Smânia ED, Smânia Júnior A, Zani CL. Biological screening of Brazilian medicinal plants. Memórias do Instituto Oswaldo Cruz. 2000; 95(3):367-373.

Ghannoum MA and Rice LB. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev. 1999; 12(4):501-517.

Tang S, Bremner P, Kortenkamp A, Schlage C, Gray AI, Gibbons S, Heinrich M. Biflavonoids with cytotoxic and antibacterial activity from Ochna macrocalyx. Planta Med. 2003; 69(03):247-253.

Müller-Heupt LK, Vierengel N, Groß J, Opatz T, Deschner J, von Loewenich FD. Antimicrobial activity of Eucalyptus globulus, Azadirachta indica, Glycyrrhiza glabra, Rheum palmatum extracts and rhein against Porphyromonas gingivalis. Antibio. 2022; 11(2):186.

Borris RP. Natural products research: perspectives from a major pharmaceutical company. J Ethnopharmacol. 1996; 51(1-3):29-38.

Moerman DE. An analysis of the food plants and drug plants of native North America. J Ethnopharmacol. 1996; 52(1):1-22.

Nakayama M, himatani K, Ozawa T, Shigemune N, Tsugukuni T, Tomiyama D, Kurahachi M, Nonaka A, Miyamoto T. A study of the antibacterial mechanism of catechins: Isolation and identification of Escherichia coli cell surface proteins that interact with epigallocatechin gallate. Food Contr. 2013; 33(2):433-439.

Zhao L, Zhang H, Hao T, Li S. In vitro antibacterial activities and mechanism of sugar fatty acid esters against five foodrelated bacteria. Food Chem. 2015; 187:370-377.

Silva CG, Herdeiro RS, Mathias CJ, Panek AD, Silveira CS, Rodrigues VP, Rennó MN, Falcão DQ, Cerqueira DM, Minto AB, Nogueira FL, Quaresma CH, Silva JF, Menezes, FS, Eleutherio EC,. Evaluation of antioxidant activity of Brazilian plants. Pharmacol Res. 2005; 52:229-233.

Villaño D, Fernández-Pachón MS, Moyá ML, Troncoso AM, García-Parrilla MC. Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta. 2007; 71(1):230-235.

Bloise MS. Antioxidant activity of grape seed extracts on peroxidation models in vitro. J Agric Food Chem. 2001; 55:1018.

Rafiq S, Wagay NA, Elansary HO, Malik MA, Bhat IA, Kaloo ZA, Hadi A, Alataway A, Dewidar AZ, El-Sabrout AM, Yessoufou K. Phytochemical Screening, Antioxidant and Antifungal Activities of Aconitum chasmanthum Stapf ex Holmes Wild Rhizome Extracts. Antioxid. 2022; 11(6):1052.

Gonçalves C, Dinis T, Batista MT. Antioxidant properties of proanthocyanidins of Uncaria tomentosa bark decoction: a mechanism for anti-inflammatory activity. Phytochem. 2005; 66(1):89-98.

Aderogba MA, Okoh EK, Idowu TO. Evaluation of the antioxidant activity of the secondary metabolites from Piliostigma reticulatum (DC.) Hochst. J Biol Sci. 2005; 5:239-242.

Kukharenko A, Brito A, Yashin YI, Yashin AY, Kuznetsov RM, Markin PA, Bochkareva NL, Pavlovskiy IA, Appolonova SA. Total antioxidant capacity of edible plants commonly found in East Asia and the Middle East determined by an amperometric method. J Food Measure Character. 2020; 14(2):809-817.

Duh PD, Du PC, Yen GC. Action of methanolic extract of mung bean hulls as inhibitors of lipid peroxidation and non-lipid oxidative damage. Food and chemical Toxicol. 1999; 37(11):1055-1061.

Ak T and Gülçin İ. Antioxidant and radical scavenging properties of curcumin. Chemico-biological interactions. 2008; 174(1):27-37.

Mohamed AA, Ali SI, El-Baz FK. Antioxidant and antibacterial activities of crude extracts and essential oils of Syzygium cumini leaves. Plos One. 2013; 8(4):e60269.

Kahkonen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, Heinonen M. Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem. 1999; 7(1):3954-3963.

Downloads

Published

2022-06-01

How to Cite

G. Ayo, R., I Achika, J., O. Bolarin-Akinwande, O., & Fawole, D. (2022). Phytochemical Analysis, Antibacterial and Antioxidant Activities of Leaf Extracts of Strychnos Innocua Del.: doi.org/10.26538/tjnpr/v6i6.24. Tropical Journal of Natural Product Research (TJNPR), 6(6), 962–968. Retrieved from https://tjnpr.org/index.php/home/article/view/34