Effect of Ambrosia tenuifolia Spreng on Danio rerio Embryo and Human Cells In Vitro http://www.doi.org/10.26538/tjnpr/v8i1.5

Main Article Content

Edith A. Segovia-Corrales
Kristha N. Paredes-Branda
Tomás López-Arias
José A. Benítez-Acuña
Pablo A. Ibarra
Griselda A. Meza-Ocampos

Abstract

Ambrosia tenuifolia is a perennial herbaceous plant of the Asteraceae family, commonly used in Paraguay for multiple purposes as an abortive, antipyretic, digestive, and against headaches commonly in the form of an infusion of aerial parts. However, the lack of information on adverse effects raises questions about its safety and potential side effects. This study was undertaken to establish the potential health risks of A. tenuifolia for human health by evaluation of the aqueous and ethanolic extracts on Danio rerio embryos and to determine the potential toxicity or teratogenicity of the aqueous extract on human cells using human peripheral blood lymphocytes (PBL). For the test with D. rerio, observations were made 24 to 96 hours after fertilization. Coagulation, somite formation, heart rate, blood flow, pigmentation, edema formation, hatching, and spinal deviation were evaluated. As a result, the extract has lethal, sublethal, and teratogenic effects on the embryonic development of D. rerio, whose effects were dose-dependent. In the PBL, cells with and without bioactivation with the solution containing the S9 fraction were found to have genotoxic effects. This study provides the first report of toxicity and genotoxic effects of extracts of A. tenuifolia using D. rerio embryos and PBL after in vitro exposure.

Article Details

How to Cite
Segovia-Corrales, E. A., Paredes-Branda, K. N., López-Arias, T., Benítez-Acuña, J. A., Ibarra, P. A., & Meza-Ocampos, G. A. (2024). Effect of Ambrosia tenuifolia Spreng on Danio rerio Embryo and Human Cells In Vitro: http://www.doi.org/10.26538/tjnpr/v8i1.5. Tropical Journal of Natural Product Research (TJNPR), 8(1), 5752-5758. https://tjnpr.org/index.php/home/article/view/3370
Section
Articles

References

Salmerón-Manzano E, Garrido-Cardena, JA, Manzano-Agugliaro F. Worldwide research trends on medicinal plants. Int. J. Environ. Res. Public Health. 2020; 17(10), 3376.

Akinyemi O, Oyewole SO, Jimoh KA. Medicinal plants and sustainable human health: a review. Hortic Int J. 2018; 2(4), 194-5.

Carballo M, Cortada C, Gadano A. Risks and benefits in the consumption of medicinal plants. Theoria. 2005; 14(2), 95 108.

Muñoz O. Medicinal plants used in Chile: chemistry and pharmacology. Santiago, Chile: Universitaria. 2001. 330 p.

Soria N, Ramos P, Viveros G, Estigarribia G, Ríos P, Ortíz A. Ethnobotany and use of medicinal plants in family health units in Caaguazú, Paraguay. Caldasia [online].

, 42(2), 263-277. https://doi. org/10.15446/caldasia. v42n2. 76907.

Pin A, Cretton S, Roguet D. Medicinal Plants from the Botanical Garden of Asunción. Asunción: Asociación Etnobotánica Paraguaya. 2009. 441 p.

Modarresi Chahardehi A, Arsad H, Lim V. Zebrafish as a Successful Animal Model for Screening Toxicity of Medicinal Plants. Plants. 2020; 9(10), E1345-E1345.

Braunbeck T, Lammer E. Fish embryo toxicity assays. German Federal Environment Agency. 2006; 298, 7-119.

Meyers JR. Zebrafish: development of a vertebrate model organism. Curr. Protoc. 2018, 16, e19-e44.

Bortagaray V. Evaluation of the embryotoxic and teratogenic properties of glyphosate-based herbicides using the embryo-larval toxicity bioassay in zebrafish (Danio rerio). Tesis. Uruguay: Ins. de Invest. Biol. Clemente Estable. 2015; 45 p.

Weigt S, Huebler N, Strecker R, Braunbeck T, Broschard T. Zebrafish (Danio rerio) embryos as a model for testing proteratogens. Toxicol. 2011; 281(2011): 25- 36.

Téllez A, Ramírez E, Ayala L. Alterations in the embryonic development of the zebrafish Danio rerio caused by chemical factors. Memorias del XVII Concurso Lasallista de Investigación. 2016. https://revistasinvestigacion. lasalle.mx/index.php /mclidi/article /view /980s.

Nagel R. Dar T: The Embryo Test with the Zebrafish Danio rerio--a General Model in Ecotoxicology and Toxicology. Altex. 2002; 19(1): 38 48.

Khotimah H, Prima WE, Weningtyas A, Aninditha D, Alita S N, Kalsum U, Handayani

D. Neuroprotective Activity and Antioxidant Effect of Salacca zalacca Peel Ethanol Extract on High Glucose Induced Zebrafish (Danio rerio) Embryo. Trop J Nat Prod Res. 2021; 5(12), 2079-2084.

Purnomo Y, Pamungkas IA, Sofiani M, Pratama S. Effect of Pulutan (Urena lobata) Leaf Extract on Blood Glucose Level, Hemoglobin and Body Growth of Zebra Fish (Danio rerio) Exposed to Malathion. Trop J Nat Prod Res. 2021; 5(6), 1034–1038.

Xia Q, Ma Z, Mei X, Luo J, Wang Y, Li T, Lin R. Assay for the developmental toxicity of safflower (Carthamus tinctorius L.) to zebrafish embryos/larvae. Journal of Trad. Chinese Med. Sc. 2017; 4(1), 71-81.

Ponpornpisit A, Pirarat N, Suthikrai W, Binwihok A. Effect of Wild Caoe Gooseberry (Physalis minima Linn.) on Zebra Fish (Danio rerio) embryo. Thailand. Thai J Vet Med. 2013. 43(1): 143 148.

Gence L, Fernezelian D, Bringart M, Veeren B, Christophe A, Brion F., ... Diotel N. Hypericum lanceolatum Lam. Medicinal Plant: Potential Toxicity and Therapeutic Effects Based on a Zebrafish Model. Front. Pharmacol. 2022; 13, 832928.

Oladipupo AR, Alaribe SC, Olalekan B, Akere H, Ayanda F, Emuejevoke T, Coker HA. Investigation of chemical, genotoxic and haematological properties of secondary metabolites from n-Hexane extract of Olax subscorpioidea oliv.(Olacaceae) leaves. Trop J Nat Prod Res. 2018; 2(12), 506–511.

Mosesso P, Cinelli S. In Vitro Cytogenetic Assays: Chromosomal Aberrations and Micronucleus Tests. Alok Dhawan and Mahima Bajpayee (eds.), Genotoxicity Assessment: Methods and Protocols. Methods in Mol. Biol. 2019; vol. 2031.

Celik R, Topaktas M. Genotoxic effects of 4-methylimidazole on human peripheral lymphocytes in vitro. Drug and Chem. Toxicol. 2018; 41(1), 27-32.

Talbi H, Talbi J, Hilali A. The in vitro chromosomal aberrations and SCEs assays for antigenotoxic effect evaluation of the Nigella sativa L. seeds extract on cultured human peripheral blood lymphocytes. Med Plants. 2017; 9(1), 68-75.

Johannes C, Obe G. Chromosomal Aberration Test in Human Lymphocytes. Alok Dhawan and Mahima Bajpayee (eds.), Genotoxicity Assessment: Methods and Protocols. Methods Mol. Biol. 2019; vol. 2031.

de Araújo CRF, Santiago FG, Peixoto MI, de Oliveira JOD, de Sousa Coutinho M. Use of medicinal plants with teratogenic and abortive effects by pregnant women in a city in Northeastern Brazil. Revista Brasileira de Ginecologia e Obstetrícia/RBGO Gynecology and Obstetrics. 2016; 38(03), 127-131.

OECD. Test No. 236: Fish Embryo Acute Toxicity (FET) Test, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris, 2013. https://doi.org/10.1787/9789264203709-en.

Benítez Acuña, JA, Ibarra P, López T, Segovia E. Effect of Campyloneurum phyllitidis (L.) C. Presl and Asplenium serratum L. on embryonic development of Danio rerio. Steviana. 2021;13(1).

Westerfield, M. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish. (4ª ed.) Universidad de Oregon. 2000; 319 p.

Cheresiz SV, Volgin AD, Kokorina Evsyukova A, Bashirzade AAO, Demin KA, de Abreu MS, Amstislavskaya TG, Kalueff AV. Understanding neurobehavioral genetics of zebrafish. J Neurogenet. 2020; 34(2):203-215.

Lammer E, Carr G, Wendler K, Rawlings J, Belanger S, Braunbeck TH. Is the fish embryo test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test. Comp. Biochem. and Physiol. 2008; 149 (2009): 196 209.

Eissa MA, Hashim YZY, Mohd Nasir MH, Nor YA, Salleh HM, Isa MM, Badawi NM. Fabrication and characterization of Agarwood extract-loaded nanocapsules and evaluation of their toxicity and anti-inflammatory activity on RAW 264.7 cells and in zebrafish embryos. Drug Delivery. 2021; 28(1), 2618-2633.

Zainol Abidin IZ, Fazry S, Jamar NH, Ediwar Dyari HR, Zainal Ariffin Z, Johari AN, Zainal Ariffin SH. The effects of Piper sarmentosum aqueous extracts on zebrafish (Danio rerio) embryos and caudal fin tissue regeneration. Sci. Rep. 2020; 10(1), 1-11.

Alvarez M, Navarro E, Perdomo L, Nicorsin E, Arias M. Toxic signals induced by an infusion of 378 fresh Melissa officinalis leaves in the zebrafish larval model Danio rerio. Tesis. 2003.

Álvarez C. Teratogenic effects of lead nitrate on embryonic development of zebrafish Danio rerio (Hamilton, 1822) at five sublethal doses. Tesis. 2011. Bogotá: Pontificia Universidad Javeriana, Facultad de Ciencias. 46 p.

Fouche G, Adenubi OT, Leboho T, McGaw LJ, Naidoo V, Wellington KW, Eloff JN. Acaricidal activity of the aqueous and hydroethanolic extracts of 15 South African plants against Rhipicephalus turanicus and their toxicity on human liver and kidney cells. Onderstepoort. J Vet Res. 2019; Jul 22;86(1): e1-e7.

Grzegorczyk-Karolak I, Kiss AK. Determination of the Phenolic Profile and Antioxidant Properties of Salvia viridis L. Shoots: A Comparison of Aqueous and Hydroethanolic Extracts. Mol. 2018;23(6):1468.

Tan SP, Stathopoulos C, Parks S, Roach P. An Optimised Aqueous Extract of Phenolic Compounds from Bitter Melon with High Antioxidant Capacity. Antioxidants (Basel). 2014; Dec 2;3(4):814-29.

Azmir J, Zaidul ISM, Rahman MM, Sharif KM, Mohamed A, Sahena F, Omar AKM. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013; 117(4), 426-436.

L.G. Wade Jr. Organic chemistry (9th ed.) Volumen I. Editorial: Pearson. 2017; ISBN: 9786073238472. ISBN ebook: 9786073238489. 880 p.

Debella A, Makonnen E, Abebe D, Teka F, Kidanemariam AT. Pain management in mice using the aqueous and ethanol extracts of four medicinal plants. East. Afr. Med. J. 2003; 80(8), 435-439.

Rodriguez RS, Haugen R, Rueber A, Huang CC. Reversible neuronal and muscular toxicity of caffeine in developing vertebrates. Comparative Biochemistry and Physiology Part C: Toxicol. Pharmacol. 2014; 163, 47-54.

Ma ZL, Wang G, Cheng X, Chuai M, Kurihara H, Lee KK, Yang X. Excess caffeine exposure impairs eye development during chick embryogenesis. J Cell Mol Med. 2014; Mar 17.

Rana N, Moond M, Marthi A, Bapatla S, Sarvepalli T, Chatti K, Challa AK. Caffeine-induced effects on heart rate in zebrafish embryos and possible mechanisms of action: an effective system for experiments in chemical biology. Zebrafish, 2010; 7(1), 69-81.

Maeda H, Hasumi A, Yoshida K. Caffeine-induced bradycardia, death, and anxiety-like behavior in zebrafish larvae. Forensic Toxicol. 2021; 39(2):427-436.

Cruces M. Preclinical toxicity studies of future drugs. Tesis. 2000. Uruguay: Facultad de Ciencias, Universidad de la República.

Alonso-Jauregui M, González-Peñas E, López de Cerain A, Vettorazzi, A. Genotoxicity of 12 Mycotoxins by the SOS/umu Test: Comparison of Liver and Kidney S9 Fraction. Toxins. 2022; 14(6).

Buchinger S, Campen E, Helmers E, Morosow V, Krefft M, Reifferscheid G. Development of a freeze-drying protocol for the long-term storage of S9-fraction at ambient temperatures. Cryobiology. 2009; 58(2), 139-144.

Richardson J, Ba S, A Kulkarni, A, F Moghaddam, M. Efficiency in drug discovery: liver S9 fraction assay as a screen for metabolic stability. Drug Metab. Lett. 2016; 10(2), 83-90.

Segal L, Penman MG, Piriou Y. Evaluation of the systemic toxicity and mutagenicity of OLIGOPIN®, procyanidolic oligomers (OPC) extracted from French Maritime Pine Bark extract. Toxicol. Rep. 2018; 5, 531-541.

Clare G. The In Vitro Mammalian Chromosome Aberration Test. In James M. Parry and Elizabeth M. Parry (eds.), Genetic Toxicology: Principles and Methods. Methods Mol. Biol. 2012; vol. 817.

Santa Cruz C, Cabrejo J. Cytotoxic and genotoxic effect of aqueous extract of leaves of Physalis peruviana L. (Aguaymanto) on meristematic cells of Allium cepa (onion). Revista Ciencia y Tecnología, 2019; 15(1), 137.145.

1Landeros JF. Genotoxic, antigenotoxic and antimutagenic activity of Psittacanthus calyculatus (DC.) G. don (mistletoe) in human and rat lymphocytes. Tesis. 2016. Available from: http://repositorio.cucba.udg. mx:8080/ xmlui/handle /123456789 /6047.