Light Emitting Diodes as a Phototherapy Light Source for Increasing Vitamin D: A Review http://www.doi.org/10.26538/tjnpr/v8i1.4
Main Article Content
Abstract
Phototherapy is treatment that uses UV light. However, other light variations can be used for phototherapy. One of them is a light-emitting diode (LED), which is known to be more efficient than other light sources. This review aims to discuss the effectiveness of light-emitting diodes (LED) as a phototherapy light source for increasing Vitamin D. Studies from online databases (Pubmed, Proquest, and Science Direct) published around 2012 to 2022 were included in the review. A combination of search strings i.e., (“LED” or “Light Emitting Diodes”) AND (“VITAMIN D3” or “VITD3” or “25(OH)D”) were used in the literature search. Twelve research articles (human- or animal-based) showed that LED UV exposure increases vitamin D. Several articles showed that LED UV is more effective and efficient in producing vitamin D compared to natural light. This review showed that LEDs are a potential light source for phototherapy to increase vitamin D, even better compared to sunlight, and using LED as a therapeutic device is a novel technique in medical treatment and can reduce related medical costs.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Yoshimura T, Manabe C, Inokuchi Y, Mutou C, Nagahama T, Murakami S. Protective effect of taurine on UVB-induced skin ageing in hairless mice. Biomed Pharmacother. 2021;141:111898. doi:10.1016/j.biopha.2021.111898
Barros N de M, Sbroglio LL, Buffara M de O, Baka JLC e. S, Pessoa A de S, Azulay-Abulafia L. Phototherapy. An Bras Dermatol. 2021;96(4):397-407. doi:10.1016/j.abd.2021.03.001
Bernard JJ, Gallo RL, Krutmann J. Photoimmunology: how ultraviolet radiation affects the immune system. Nat Rev Immunol. 2019;19(11):688-701. doi:10.1038/s41577-019-0185-9
Matos TR, Sheth V. The symbiosis of phototherapy and photoimmunology. Clin Dermatol. 2016;34(5):538-47. doi:10.1016/j.clindermatol.2016.05.003
Orlova T, Terenetskaya I. UV Phototherapy : A New Look at the UV Sources and Doses. Clin Med. 2020;2(1):1-4.
Park DH, Oh ST, Lim JH. Development of UVB LED lighting system based on UV dose calculation algorithm to meet individual daily UV dose. Appl Sci. 2019;9(12):2479. doi:10.3390/app9122479
Pirc M, Caserman S, Ferk P, Topič M. Compact uv led lamp with low heat emissions for biological research applications. Electron. 2019;8(3):343. doi:10.3390/electronics8030343
Bustamante M, Hernandez-Ferrer C, Sarria Y, Harrison GI, Nonell L, Kang W, Friedländer MR, Estivill X, González JR, Nieuwenhuijsen M, Young AR. The acute effects of ultraviolet radiation on the blood transcriptome are independent of plasma 25OHD3. Environ Res. 2017;159:239-48. doi:10.1016/j.envres.2017.07.045
Mai ZM, Byrne SN, Little MP, Sargen MR, Cahoon EK. Solar UVR and Variations in Systemic Immune and Inflammation Markers. JID Innov. 2021;1(4):100055. doi:10.1016/j.xjidi.2021.100055
Kolp E, Wilkens MR, Pendl W, Eichenberger B, Liesegang A. Vitamin D metabolism in growing pigs: influence of UVB irradiation and dietary vitamin D supply on calcium homeostasis, its regulation and bone metabolism. J Anim Physiol Anim Nutr (Berl). 2017;101:79-94. doi:10.1111/jpn.12707
Habib AM, Nagi K, Thillaiappan NB, Sukumaran VK, Akhtar S. Vitamin D and Its Potential Interplay With Pain Signaling Pathways. Front Immunol. 2020;11:1-19. doi:10.3389/fimmu.2020.00820
Oh ST, Park DH, Lim JH. Designing safe general LED lighting that provides the UVB benefits of sunlight. Appl Sci. 2019;9(5):826. doi:10.3390/app9050826
Sreelatha A, Sam NV, Raghavan RP. Protective effects of Vitamin D -A review article. J Young Pharm. 2018;10(4):388-91. doi:10.5530/jyp.2018.10.86
Adelani IB, Ogadi EO, Rotimi OA, Duduyemi BM, Maduagwu EN, Rotimi SO. Time Course Effects of Dietary Vitamin D on Diethylnitrosamine-Induced Oxidative Stress in Rat Kidney. Trop J Nat Prod Res. 2021; 5(6):1118-1124. doi.org/10.26538/tjnpr/v5i6.23
Orlova T, Moan J, Lagunova Z, Aksnes L, Terenetskaya I, Juzeniene A. Increase in serum 25-hydroxyvitamin-D3 in humans after sunbed exposures compared to previtamin D3 synthesis in vitro. J Photochem Photobiol B Biol. 2013;122:32-6. doi:10.1016/j.jphotobiol.2013.03.006
Lee HJ, Yoo S, Hong JK, Ahn JS, Lee E, Moon H, Koo S, Kim T, Park J, Yoon IY. The effect of proto-type wearable light-emitting devices on serum 25-hydroxyvitamin D
levels in healthy adults: a 4-week randomized controlled trial. Eur J Clin Nutr. 2023;77(3):342-347. doi: 10.1038/s41430-022-01241-z. Epub 2022 Nov 23. PMID: 36418536; PMCID: PMC9684875.
Charoenngam N, Holick MF. Immunologic effects of vitamin D on human health and disease. Nutrients. 2020;12(7):1-28. doi:10.3390/nu12072097
Austin E, Geisler AN, Nguyen J, Kohli I, Hamzavi I, Lim HW, Jagdeo J. Visible light. Part I: Properties and cutaneous effects of visible light. J Am Acad Dermatol. 2021;84(5):1219-31. doi:10.1016/j.jaad.2021.02.048
Barnkob LL, Petersen PM, Nielsen JP, Jakobsen J. Vitamin D enhanced pork from pigs exposed to artificial UVB light in indoor facilities. Eur Food Res Technol. 2019;245(2):411-8. doi:10.1007/s00217-018-3173-6
Stricker Jakobsen S, Nielsen JP, Jakobsen J. Effect of UVB light on vitamin D status in piglets and sows. J Steroid Biochem Mol Biol. 2020;200:105637. doi:10.1016/j.jsbmb.2020.105637
Veronikis AJ, Cevik MB, Allen RH, Shirvani A, Sun A, Persons KS and Holick MF. Evaluation of a ultraviolet B Light Emitting Diode (LED) for producing Vitamin D3 in human skin. Anticancer Res. 2020;40(2):719-22. doi:10.21873/anticanres.14002
Bergesen JD, Tähkämö L, Gibon T, Suh S. Potential Long-Term Global Environmental Implications of Efficient Light-Source Technologies. J Ind Ecol. 2016;20(2):263-75. doi:10.1111/jiec.12342
Morita D, Nishida Y, Higuchi Y, Seki T, Ikuta K, Asano H, Ishiguro N. Short-range ultraviolet irradiation with LED device effectively increases serum levels of 25(OH)D. J Photochem Photobiol B Biol. 2016;164:256-63. doi:10.1016/j.jphotobiol.2016.09.036
Barnkob LL, Argyraki A, Petersen PM, Jakobsen J. Investigation of the effect of UV-LED exposure conditions on the production of Vitamin D in pig skin. Food Chem. 2016;212:386-91. doi:10.1016/j.foodchem.2016.05.155
Kalajian TA, Aldoukhi A, Veronikis AJ, Persons K, Holick MF. Ultraviolet B Light Emitting Diodes (LEDs) Are More Efficient and Effective in Producing Vitamin D3 in Human Skin Compared to Natural Sunlight. Sci Rep. 2017;7(1):6-13. doi:10.1038/s41598-017-11362-2
Cusack L, Rivera S, Lock B, Benboe D, Brothers D, Divers S. Effects of a light-emitting diode on the production of cholecalciferol and associated blood parameters in the bearded dragon (Pogona vitticeps). J Zoo Wildl Med. 2017;48(4):1120-6. doi:10.1638/2016-0222.1
Guo R, Du Y, Zhang S, Liu H, Fu Y. The effects of ultraviolet supplementation to the artificial lighting on rats’ bone metabolism, bone mineral density, and skin. J Photochem Photobiol B Biol. 2018;188(37):12-8. doi:10.1016/j.jphotobiol.2018.08.020
Morita D, Higuchi Y, Makida K, Seki T, Ikuta K, Ishiguro N, Nishida Y. Effects of ultraviolet irradiation with a LED device on bone metabolism associated with vitamin D deficiency in senescence-accelerated mouse P6. Heliyon. 2020;6(2):e03499. doi:10.1016/j.heliyon.2020.e03499
Oh ST, Lim JH. Development and effect analysis of UVB-LED general lighting to support vitamin D synthesis. Appl Sci. 2020;10(3):889. doi:10.3390/app10030889
Wei Y, Zheng W, Li B, Tong Q, Shi H, Li X. Effects of B-wave ultraviolet supplementation using light-emitting diodes on caged laying hens during the later phase of the laying cycle. Animals. 2020;10(1):1-13. doi:10.3390/ani10010015
Ochiai S, Nishida Y, Higuchi Y, Morita D, Makida K, Seki T, Ikuta K, Imagama S. Short-range UV-LED irradiation in postmenopausal osteoporosis using ovariectomized mice. Sci Rep. 2021;11(1):1-13. doi:10.1038/s41598-021-86730-0
Lin MY, Lim LM, Tsai SP, Jian FX, Hwang SJ, Lin YH, Chiu YW. Low dose ultraviolet B irradiation at 308 nm with light-emitting diode device effectively increases serum levels of 25(OH)D. Sci Rep. 2021;11(1):1-9. doi:10.1038/s41598-021-82216-1
Lee SH, Joo NS. Effects of narrowband ultraviolet B exposure on serum 25-hydroxyvitamin D concentrations: A pilot study. Med (United States). 2022;101(33):E29937. doi:10.1097/MD.0000000000029937
Bonnans M, Fouque L, Pelletier M, Chabert R, Pinacolo S, Restellini L, Cucumel K. Blue light: Friend or foe ? J Photochem Photobiol B Biol. 2020;212(April):0-7. doi:10.1016/j.jphotobiol.2020.112026
Oliveira LMC, Tuchin VV. The Optical Clearing Method. Springer Nature; 2019. doi:10.1007/978-3-030-33055-2
Zhang Y Guo, Xia Y, Sun J. A simple and sensitive method to detect vitamin D receptor expression in various disease models using stool samples. Genes Dis. 2021;8(6):939-45. doi:10.1016/j.gendis.2020.03.002
González-Castro TB, Blachman-Braun R, Hernández-Díaz Y, Tovilla-Zárate CA, Pérez-Hernández N, Moscardi PRM, Alam A, Borgonio-Cuadra VM, Reyes-López PA, Juárez-Rojop IE, López-Narváez ML, Posadas-Sánchez RP, Vargas-Alarcón G, Rodríguez-Pérez JM. Association of vitamin D receptor polymorphisms and nephrolithiasis: A meta-analysis. Gene. 2019;711(June):143936. doi:10.1016/j.gene.2019.06.026
Khammissa RAG, Ballyram R, Jadwat Y, Fourie J, Lemmer J, Feller L. Vitamin D Deficiency as It Relates to Oral Immunity and Chronic Periodontitis. Int J Dent. 2018;2018:1-9. doi:10.1155/2018/7315797
Lv L, Tan X, Peng X, Bai R, Xiao Q, Zou T, Tan J, Zhang H, Wang C. The relationships of vitamin D, vitamin D receptor gene polymorphisms, and vitamin D supplementation with Parkinson’s disease. Transl Neurodegener. 2020;9(1):1-13. doi:10.1186/s40035-020-00213-2
Haddad S. Vitamin-D receptor (VDR) gene polymorphism (FokI) in Syrian healthy population. Gene Reports. 2021;23:101083. doi:10.1016/j.genrep.2021.101083
Yun SH, Kwok SJJ. Light in diagnosis, therapy and surgery. Nat Biomed Eng. 2017;1:0008. doi:10.1038/s41551-016-0008