Phenolic Constituents, Antioxidant and Antimicrobial Activities of Globe Artichoke (Cynara scolymus L.) Aqueous Extracts doi.org/10.26538/tjnpr/v5i11.16

Main Article Content

Mohamed A. Ali
Magdy A. Shallan
Walaa A. Meshrf
Diaa A. Marrez

Abstract

Globe artichoke (Cynara scolymus L.) is a promising herbal plant, rich in bioactive compounds. The present study aimed to determine the phenolic profile, antioxidants and antimicrobial activities of globe artichoke bracts and receptacles aqueous extracts. Phenolic compounds in artichoke bracts and receptacles aqueous extracts were determined by high performance liquid chromatography (HPLC). The antioxidant activity was assayed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging and ferric ion reducing antioxidant power (FRAP), and the antimicrobial activity was determined using disc-diffusion assay. The total phenolic and flavonoid contents of the bracts extract (24.04 µg GAE mg-1 and 194.07  g QE mg-1, respectively) were higher than in the receptacles (15.1 µg GAE mg-1 and 52.07 µg QE mg-1 , respectively). The bracts  extract contained ten phenolic compounds, of which the major one was p-hydroxybenzoic (9.88 mg g-1 ), while the receptacles extract contained five compounds, with Gentisic acid (6.36 mg g-1 ) as the major compound. The bracts extract showed higher antioxidant activity (26.05% and 20.21% at 10ppm for DPPH and ABTS, and 14.05 µmol/L at 100 ppm for FRAP) compared to that of the receptacles. The aqueous extracts of bracts and receptacles showed antimicrobial activity against all tested foodborne pathogenic bacteria and mycotoxigenic fungi with inhibition zone diameters ranging from 7.2 to 11.2 mm and minimum inhibitory concentration (MIC) values ranging between 0.04 and 4.2 mg mL-1 . The results revealed that globe artichoke bracts and receptacles could possess important antioxidant and antimicrobial properties that may improve its quality as a functional food. 

Article Details

How to Cite
A. Ali, M., A. Shallan, M., A. Meshrf, W., & A. Marrez, D. (2021). Phenolic Constituents, Antioxidant and Antimicrobial Activities of Globe Artichoke (Cynara scolymus L.) Aqueous Extracts: doi.org/10.26538/tjnpr/v5i11.16. Tropical Journal of Natural Product Research (TJNPR), 5(11), 1986-1994. https://tjnpr.org/index.php/home/article/view/322
Section
Articles

References

Gul K, Singh A, Jabeen, R. Nutraceuticals and functional foods: The foods for the future world. Crit Rev Food SciNutr. 2016; 56(16): 2617-2627.

Gutiérrez-del-Río I, Fernández J, Lombó F. Plant nutraceuticals as antimicrobial agents in food preservation: Terpenoids, polyphenols and thiols. Int J Antimicrob Agents. 2018; 52(3):309-315.

Shallan MA, Ali MA, Meshrf WA, Marrez DA. In vitroantimicrobial, antioxidant and anticancer activities of globe artichoke (Cynara cardunculus var. scolymus L.) bracts and receptacles ethanolic extract. Biocatal Agric Biotechnol. 2020; 29(10):101774.

Yildirim AB, Basay S, Turker AU. A comparison of organically and conventionally grown artichokes: phenolic constituents, antioxidant, and ntibacterial activities. Acta Alimentaria. 2020; 49(1):69-75.

FAOSTAT. The State of Food and Agriculture, moving forward on food loss and waste reduction. FAO, Rome. 2019. 156 p.

Zuorro A, Maffei G, Lavecchia R. Reuse potential of artichoke (Cynara scolimus L.) waste for the recovery of phenolic compounds and bioenergy. J Clean Prod. 2016; 111(A):279-284.7. Rabelo RS, Machado MT, Martínez J, Hubinger MD. Ultrasound assisted extraction and nanofiltration of phenolic compounds from artichoke solid wastes. J Food Eng. 2016; 178(A6):170-180.

Francavilla M, Marone M, Marasco P, Contillo F, Monteleone M. Artichoke biorefinery: from food to advanced technological applications. Foods. 2021; 10(1):112.

Sihem D, Samia D, Gaetano P, Sara L, Giovanni M, Hassiba C, Laura G, Noureddine HA. In vitro antioxidant activities and phenolic content in crop residues of Tunisian globe artichoke. Sci Horticult. 2015; 190(2015):128-136.

Fratianni F, Tucci M, De Palma M, Pepe R, Nazzaro F. Polyphenolic composition in different parts of some cultivars of globe artichoke (Cynara cardunculus L. var. scolymus (L.) Fiori). Food Chem. 2007; 104(3):1282-1286.

Noriega-Rodríguez D, Soto-Maldonado C, Torres-Alarcón C, Pastrana-Castro L, Weinstein-Oppenheimer C, ZúñigaHansen M. Valorization of globe artichoke (Cynara scolymus) agro-industrial discards, obtaining an extract 189 with a selective effect on viability of cancer cell lines. Proc. 2020; 8(6):715.

Abu-Reidah IM, Arráez-Román D, Segura-Carretero A, Fernández-Gutiérrez A. Extensive characterisation of bioactive phenolic constituents from globe artichoke (Cynara scolymus L.) by HPLC–DAD-ESI-QTOFMS. Food Chem. 2013; 141(3): 2269-2277.

Blanco E, Sabetta W, Danzi D, Negro D, Passeri V, Lisi AD, Paolocci F, Sonnante G. Isolation and characterization of the flavonol regulator CcMYB12 from the globe artichoke [Cynara cardunculus var. scolymus (L.) Fiori]. Front Plant Sci. 2018; 9(7): 941(1-16).

Dabbou S, Dabbou S, Flamini G, Pandino G, Gasco L, Helal AN. Phytochemical compounds from the crop byproducts of Tunisian globe artichoke cultivars. Chem Biodivers. 2016; 13(11):1475-1483.

Durazzo A, Foddai MS, Temperini A, Azzini E, Venneria E, Lucarini M, Finotti E, Maiani G, Crinò P, Saccardo F, Maiani G. Antioxidant properties of seeds from lines of artichoke, cultivated cardoon and wild cardoon. Antioxid. 2013; 2(2):52-61.

Jiménez-Moreno N, Cimminelli M, Volpe F, Ansó R, Esparza I, Mármol I, Rodríguez-Yoldi M, AncínAzpilicueta C. Phenolic composition of artichoke waste and its antioxidant capacity on differentiated Caco-2 cells. Nutr. 2019; 11(8):1723.

Rocchetti G, Giuberti G, Lucchini F, Lucini . Polyphenols and sesquiterpene lactones from artichoke heads: Modulation of starch digestion, gut bioaccessibility, and bioavailability following in vitro digestion and large intestine fermentation. Antioxid. 2020; 9(4): 306.

Lattanzio V, Kroon PA, Linsalata V, Cardinali A. Globe artichoke: A functional food and source of nutraceutical ingredients. J Funct Foods. 2009; 1(2):131-144.

Petropoulos SA, Pereira C, Tzortzakis N, Barros L, Ferreira IC. Nutritional value and bioactive compounds

characterization of plant parts from Cynara cardunculus L. (Asteraceae) cultivated in central Greece. Front Plant Sci. 2018; 9(4):459 (1-12).

Elshamy AI, Abdallah HM, Farrag A, Riciputi Y, Pasini F, Taher RF, Hegazy ME. Artichoke phenolics confer protection against acute kidney njury. Rev Bras Farmacogn. 2020; 30(1):34-42.

Sokkar HH, Dena A, Mahana NA, Badr A. Artichoke extracts in cancer therapy: do the extraction conditions affect the anticancer activity? Future J Pharm Sci. 2020; 6(1):1-21.

Rejeb IB, Dhen N, Gargouri M, Boulila A. Chemical composition, antioxidant potential and enzymes inhibitory properties of Globe artichoke by‐products. Chem Biodiver. 2020; 17(9): e2000073.

Makkar HP. Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Rum Res. 2003; 49(3):241-256.

Zhishen J, Mengcheng T, Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999; 64(4):555-559.

Kim KH, Tsao R, Yang R, Cui SW. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem. 2006; 95(3):466-473.

Chandrasekar D, Madhusudhana K, Ramakrishna S, Diwan PV. Determination of DPPH free radical scavenging activity by reversed phase HPLC: a sensitive screening

Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad Biol Med. 1999; 26(9-10): 1231-1237.

Pulido R, Bravo L, Saura-Calixto F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J Agric Food Chem. 2000; 48(8):3396-3402.

Bauer A, Kirby W, Sheriss J, Turck M. Antibiotic susceptibility testing by standardized single method. Am J Clin Pathol. 1966; 45(4):493-496.

Marrez DA, Naguib MM, Sultan YY, Higazy AM. Antimicrobial and anticancer activities of Scenedesmus obliquus metabolites. Heliyon. 2019; 5(3):e01404.

Medeiros M, Oliveira D, Rodrigues D, Freitas D. Prevalence and antimicrobial resistance of Salmonella in chicken carcasses at retail in 15 Brazilian cities. Revista Panamericana de Salud Pública. 2011; 30(6): 555-560.

Andrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother. 2001; 48(1):5-16.

Sokmen A, Okmen A, Gulluce M, Akpulat H, Dafera D. The in vitro antimicrobial and antioxidant activities of the essential oils and methanol extracts of endemic Thymus spathulifolius. Food Contr. 2004; 15(8):627-634.

Marrez DA and Sultan YY. Antifungal activity of the cyanobacterium Microcystis aeruginosa against mycotoxigenic fungi. J Appl Pharm Sci. 2016; 6(11):191-198.

Ben Salem M, Affes H, Athmouni K, Ksouda K, Dhouibi R, Sahnoun Z, Zeghal KM. Chemicals Compositions, Antioxidant and Anti-Inlammatory Activity of Cynara scolymus Leaves Extracts, and Analysis of Major Bioactive Polyphenols by HPLC. Evid-Based Compl Altern Med. 2017; 2017 (4): 4951937 (1–14).

Chen GL, Zhang X, Chen SG, Han MD, Gao YQ. Antioxidant activities and contents of free, esterified and insoluble-bound phenolics in 14 subtropical fruit leaves collected from the south of China. J Funct Foods. 2017; 30(C):290-302.

Yang M, Ma Y, Wang Z, Khan A, Zhou W, Zhao T, Cao J, Cheng G, Cai S. Phenolic constituents, antioxidant and cytoprotective activities of crude extract and fractions from cultivated artichoke inflorescence. Ind Crops Prod. 2020; 143(1):111433 (1-11).

Zan MA, Ferraz AB, Richter MF, Picada, JN, de Andrade HH, Lehmann M, Dihl, R, Nunes, E, Semedo J, Da Silva J. In vivo genotoxicity evaluation of an artichoke (Cynara scolymus L.) aqueous extract. J Food Sci. 2013; 78(2):T367-T371.

Staszowska-Karkut M and Materska M. Phenolic composition, mineral content, and beneficial bioactivities of leaf extracts from black currant (Ribes nigrum L.), raspberry (Rubus idaeus), and aronia (Aronia melanocarpa). Nutr. 2020; 12(2): 463.

Borgognone D, Cardarelli M, Rea E, Lucini L, Colla G. Salinity source-induced changes in yield, mineral composition, phenolic acids and

flavonoids in leaves of artichoke and cardoon grown in floating system. J Sci Food Agric. 2014; 94(6): 1231–1237.

Santana-Gálvez J, Cisneros-Zevallos L, Jacobo-Velázquez DA. Chlorogenic acid: Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules. 2017; 22(3):358.

Cao Y, Zhang L, Sun S, Yi Z, Jiang X, Jia, D. Neuroprotective effects of syringic acid against OGD/Rinduced injury in cultured hippocampal neuronal cells. Int J Mol Med. 2016; 38(2):567-573.

Cikman O, Soylemez O, Ozkan OF, Kiraz HA, Sayar I, Ademoglu S, Taysi, S, Karaayvaz M. Antioxidant activity of syringic acid prevents oxidative stress in l-arginine–induced acute pancreatitis: An experimental study on rats. Int Surg. 2015; 100(5): 891-896.

Sancak EB, Akbas A, Silan C, Cakir DU, Turkon H, Ozkanli SS. Protective effect of syringic acid on kidney ischemia-reperfusion injury. Ren Fail. 2016; 38(4):629-635.

Semaming Y, Pannengpetch P, Chattipakorn SC, Chattipakorn N. Pharmacological properties of protocatechuic acid and its potential roles as complementary medicine. Evid-Based Compl Altern Med. 2015; 593902(D):1-11.

Singh VK, Romaine PL, Newman VL, Seed TM. Medical countermeasures for unwanted CBRN exposures: part II radiological and nuclear threats with review of recent countermeasure patents. Expert Opin Ther Pathol. 2016; 26(12):1399-1408.

Yakoub A, Abdehedi O, Jridi M, Elfalleh W, Nasri M, Ferchichi A. Flavonoids, phenols, antioxidant, and antimicrobial activities in various extracts from Tossa jute leave (Corchorus olitorus L.). Ind Crops Prod. 2018; 118(8):206-213.

Noldin V, Cechinel Filho V, Monache F, Benassi J, Christmann I, Pedrosa R, Yunes R. Chemical composition and biological activities of the leaves of Cynara scolymusL. (alcachofra) cultivated in Brasil. New Chem. 2003; 26(3):331-334.

Wang M, Simon JE, Aviles IF, He K, Zheng QY, Tadmor, Y. Analysis of antioxidative phenolic compounds in artichoke (Cynara scolymus L.). J Agric Food Chem. 2003; 51(3):601-608.

Schütz K, Muks E, Carle R, Schieber A. Quantitative determination of phenolic compounds in artichoke-based dietary supplements and pharmaceuticals by highperformance liquid chromatography. J Agric Food Chem. 2006; 54(23):8812-8817.

Zhang B, Deng Z, Ramdath DD, Tang Y, Chen PX, Liu R, Liu Q, Tsao R. Phenolic profiles of 20 Canadian lentil cultivars and their contribution to antioxidant activity and inhibitory effects on α-glucosidase and pancreatic lipase. Food Chem. 2015; 172(4):862-872.

Zhou J, Ma Y, Jia Y, Pang M, Cheng G, Cai S. Phenolic profiles, antioxidant activities and cytoprotective effects of different phenolic fractions from oil palm (Elaeis guineensis Jacq.) fruits treated by ultra-high pressure. Food Chem. 2019; 288(8):68-77.

Azzini E, Bugianesi R, Romano F, Di Venere D, Miccadei S, Durazzo A, Foddai MS, Catasta G, Linsalata V, Maiani G. Absorption and metabolism of bioactive molecules after oral consumption of cooked edible heads of Cynara scolymus L. (cultivar Violetto di Provenza) in human subjects: a pilot study. Br J Nutr. 2007; 97(5): 963-969.

Löhr G, Deters A, Hensel A. In vitro investigations of Cynara scolymus L. extract on cell physiology of HepG2 liver cells. Br J Pharm Sci. 2009; 45(2):201-208.

Dabbou S, Dabbou S, Flamini G, Peiretti PG, Pandino G, Helal AN. Biochemical characterization and antioxidant activities of the edible part of globe artichoke cultivars grown in Tunisia. Int J Food Prop. 2017; 20(1):S810-S819.

Turkiewicz IP, Wojdyło A, Tkacz K, Nowicka P, Hernández F. Antidiabetic, anticholinesterase and antioxidant activity vs. terpenoids and phenolic compounds in selected new cultivars and hybrids of artichoke Cynara scolymus L. Molecules. 2019; 24(7):1222.

Biel W, Witkowicz R, Piątkowska E, Podsiadło C. Proximate composition, minerals and antioxidant activity of artichoke leaf extracts. Biol Trace Elem Res. 2020; 194(2):589-595.

Sharma A and Cannoo DS. Effect of extraction solvents/techniques on polyphenolic contents and antioxidant potential of the aerial parts of Nepeta leucophylla and the analysis of their phytoconstituents using RP-HPLC-DAD and GC-MS. RSC Adv. 2016; 6(81): 78151-78160.

Fritsche J, Beindorff C, Dachtler M, Zhang H, Lammers J. Isolation, characterization and determination of minor artichoke (Cynara scolymus L.) leaf extract compounds. Eur Food Res Technol. 2002; 215(2):149-157.

Kaymaz M, Kandemir F, Pamukçu E, Eröksüz Y, Özdemir N. Effects of aqueous artichoke (Cynara scolymus) leaf extract on hepatic damage generated by alpha‐amanitine. Kafkas Univ Vet Fak Derg. 2017; 23(1):155-160.

Oliveira G, Oliveira F, Alencar M, Gomes Junior A, Souza A, Cavalcante, A, Freitas R. Evaluation of antioxidant capacity of the aqueous extract of Cynara scolymus L. (Asteraceae) in vitro and in Saccharomyces cerevisiae. Afr J Pharm Pharmacol. 2014; 8(5): 136-147.

Kollia E, Markaki P, Zoumpoulakis P, Proestos C. Comparison of different extraction methods for the determination of the antioxidant an antifungal activity of Cynara scolymus and C. cardunculus extracts and infusions. Nat Prod Commun. 2017; 12:423-426.

Kollia E, Markaki P, Zoumpoulakis P, Proestos C. Antioxidant activity of Cynara scolymus L. and Cynara cardunculus L. extracts obtained by different extraction techniques. Nat Prod Res. 2017; 31(10):1163-1167.

Kim G, Gan R, Zhang D, Farha A, Habimana O, Mavumengwana V, Li H, Wang X, Corke H. Large-Scale Screening of 239 Traditional Chinese Medicinal Plant Extracts for Their Antibacterial Activities against Multidrug-Resistant Staphylococcus aureus and Cytotoxic Activities. Pathogens. 2020; 9(3):185.

Noumi E, Snoussi M, Merghni A, Nazzaro F, Quindós G, Akdamar, G, Mastouri M, Al-Sieni A, Ceylan, O. Phytochemical composition, anti-biofilm and anti-quorum sensing potential of fruit, stem and leaves of Salvadora persica L. methanolic extracts. Microbial Path. 2017;

(8):169-176.

Packiavathy I, Agilandeswari P, Musthafa K, Pandian S, Ravi A. Antibiofilm and quorum sensing inhibitory potential of Cuminum cyminum and its secondary metabolite methyl eugenol against Gram negative bacterial pathogens. Food Res Int. 2012; 45(1): 85-92.

Elisha IL, Botha FS, McGaw LJ, Eloff JN. The antibacterial activity of extracts of nine plant species with good activity against Escherichia coli against five other bacteria and cytotoxicity of extracts. BMC Compl Med Ther. 2017; 17(1):1-10.

Lewis K and Ausubel FM. Prospects for plant-derived antibacterials. Nat Biotechnol. 2006; 24(12):1504-1507.

Gyawali R and Ibrahim S. Natural products as antimicrobial agents. Food control. 2014; 46:412-429.

Silva LN, Zimmer KR, Macedo AJ, Trentin DS. Plant natural products targeting bacterial virulence factors. Chem Rev. 2016; 116(16): 9162-9236.

Mejri F, Baati T, Martins A, Selmi S, Serralheiro ML, Falé PL, Hosni K. Phytochemical analysis and in vitro and in vivo evaluation of biological activities of artichoke (Cynara scolymus L.) floral stems: Towards the valorization of food by-products. Food Chem. 2020; 333(1-2):127506.

Xie Y, Yang W, Tang F, Chen X, Ren L. Antibacterial activities of flavonoids: structure-activity relationship and mechanism. Curr Med Chem. 2015; 22(1):132-149.

Farhadi F, Khameneh B, Iranshahi M, Iranshahy M. Antibacterial activity of flavonoids and their structure–activity relationship: An update review. Phytother Res. 2019; 33(1):13-40.

Barbieri R, Coppo E, Marchese A, Daglia M, SobarzoSánchez E, Nabavi SF, Nabavi SM. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol Res. 2017; 196(Mar):44-68.

Khameneh B, Iranshahy M, Soheili V, Bazzaz B. Review on plant antimicrobials: A mechanistic viewpoint. Antimicrob Resist Infect Contr. 2019; 8(1):1-28.

Górniak I, Bartoszewski R, Króliczewski J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem Rev. 2019; 18(1):241-272.

Siriwong S, Thumanu K, Hengpratom T, Eumkeb G. Synergy and mode of action of ceftazidime plus quercetin or luteolin on Streptococcus pyogenes. Evid-Based Compl Altern Med. 2015; 759459(D):1-13.

Chen CC and Huang CY. Inhibition of Klebsiella pneumoniae DnaB helicase by the flavonol galangin. The Protein J. 2011; 30(1): 59-65.

Huang Y, Huang C, Chen C, Yang K, Huang C. Inhibition of Staphylococcus aureus PriA helicase by flavonol kaempferol. The Protein J. 2015; 34(3):169-172.

Essid I, Tajine S, Gharbi S, Bellagha S. Use of pomegranate peel and artichoke leaf extracts to improve the quality of marinated sardine (Sardinella aurita) fillets. J Food Sci Technol. 2020; 57(2):713-722.

Lou Z, Wang H, Zhu S, Ma C and Wang Z. Antibacterial activity and mechanism of action of chlorogenic acid. J Food Sci. 2011; 76(6):398-403.