Cottonwood Honey (Ceiba pentandra) as Bioreductor for Preparation of AgNPs-mediated Chitosan-based Hand Gel Sanitizer http://www.doi.org/10.26538/tjnpr/v7i12.29
Main Article Content
Abstract
Antimicrobial resistance is a critical issue where microorganisms develop resistance to the drugs intended to control them, thus posing a significant threat to global health. Silver nanoparticles (AgNPs) have various types of antibacterial mechanisms that can effectively overcome this problem. In this work, AgNPs were modified with water-soluble chitosan (oligochitosan) obtained by depolymerizing low molecular weight chitosan as a stabilizer to enhances the antibacterial activity of the nanoparticles. The synthesis of AgNPs was carried out through an environmentally friendly approach by mixing 0.1 M AgNO3 with 3% cottonwood honey solution as a bioreductor for formulating a nonalcoholic hand sanitizer. The mixture was exposed to sunlight at temperatures between 26oC to 35oC with an intensity of 88,400-137,600 lux for 10 minutes. UV-Vis spectroscopic analysis showed a broad peak in the wavelength range of 330-550 nm, with the highest peak recorded at 450 nm. In the antibacterial activity test of the hand sanitizer gel containing AgNPs-mediated chitosan at concentrations of 5%, 7.5%, 10%, and 12.5%, the inhibition zones observed against Staphylococcus aureus bacteria were 12.58 mm, 14.35 mm, 14.66 mm, and 17.14 mm, while for Pseudomonas aeruginosa bacteria the inhibition zones were 11.41 mm, 12.33 mm, 12.99 mm, and 13.63 mm, respectively. AgNPs-mediated chitosan-based hand gel sanitizer demonstrates superior antibacterial efficacy compared to traditional 70% alcohol-based hand sanitizers. This innovative solution offers an alternative to continuous alcohol use, which can cause skin irritation, while also addressing concerns related to antimicrobial resistance.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Hardy BL, Bansal G, Hewlett KH, Arora A, Schaffer SD, Kamau E, Bennett JW, Merrell DS. Antimicrobial Activity of Clinically Isolated Bacterial Species Against Staphylococcus aureus. Front Microbiol. 2020; 10:2977. Doi: 10.3389/fmicb.2019.02977
Jing JLJ, Yi TP, Bose RJC, McCarthy JR, Tharmalingam N, Madheswaran T. Hand Sanitizers: A Review on Formulation Aspects, Adverse Effects, and Regulations. Int J Env Res Public Health. 2020; 17(3326):1-17. Doi: 10.3390/ijerph17093326
Booq RY, Alshehri AA, Almughem FA, Zaidan NM, Aburayan WS, Bakr AA, Kabli SH, Alshaya HA, Alsuabeyl MS, Alyamani, EJ, Tawfik EA. Formulation and Evaluation of Alcohol-Free Hand Sanitizer Gels to Prevent the Spread of Infections during Pandemics. Int J Environ Res Public Health. 2021; 18(12):6252. Doi: 10.3390/ijerph18126252
Malik S, Muhammad K, Waheed Y. Nanotechnology: A Revolution in Modern Industry. Molecules. 2023; 28(2):661. Doi: 10.3390/molecules28020661
Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem. 2019; 12(7):908-931. Doi: 10.1016/j.arabjc.2017.05.011
Bamal D, Singh A, Chaudhary G, Kumar M, Singh M, Rani N, Mundlia P, Sehrawat AR. Silver Nanoparticles Biosynthesis, Characterization, Antimicrobial Activities, Applications, Cytotoxicity and Safety Issues: An Updated Review. Nanomaterials. 2021; 11(8):2086. Doi: 10.3390/nano11082086
Mikhailova EO. Silver Nanoparticles: Mechanism of Action and Probable Bio-Application. J Funct Biomater. 2020; 11(4):84. Doi: 10.3390/jfb11040084
Nguyen NPU, Dang NT, Doan L, Nguyen TTH. Synthesis of Silver Nanoparticles: From Conventional to ‘Modern’ Methods—A Review. Processes. 2023; 11(9):2617. Doi: 10.3390/pr11092617
Patil S, Chandrasekaran R. Biogenic nanoparticles: a comprehensive perspective in synthesis, characterization, application and its challenges. J Genet Eng Biotechnol. 2020; 18(1):67. Doi: 10.1186/s43141-020-00081-3
Omeche BN, Ezeala CI, Ikem JC, Uzor FP. Green Synthesis of Silver Nanoparticles Using Cola nitida Nut Extract (Vent.) Schott & Endl. (Malvaceae), Characterization and the Determination of their Antimicrobial Activity. Trop J Nat Prod Res. 2022; 6(1):156-160. Doi: 10.26538/tjnpr/v6i1.25
Farid MM, Emam M, Mohammed RS, Hussein SR, Marzouk MM. Green Silver Nanoparticles Based on the Chemical Constituents of Glinus lotoides L.: In Vitro Anticancer and Antiviral Evaluation. Trop J Nat Prod Res. 2020; 4(10):714-721. Doi: 10.26538/tjnpr/v4i10.10
Farid MM, Emam M, Mohammed RS, Hussein SR, Marzouk MM. Green The Toxic Impact of Silver Nanoparticles Synthesized Extracellularly by Aspergillus flavus on Breast Cancer Cells (MDA-MB-231), as Well as Their Antibacterial Activity. Trop J Nat Prod Res. 2023; 7(9). Doi: 10.26538/tjnpr/v7i9.14
Kumar AS, Madhu G, John E, Kuttinarayanan SV, Nair SK. Optical and antimicrobial properties of silver nanoparticles synthesized via green route using honey. Green Process Synth. 2020; 9(1):268-274. Doi: 10.1515/gps-2020-0029
Bobiş O, Dezmirean DS, Moise AR. Honey and Diabetes: The Importance of Natural Simple Sugars in Diet for Preventing and Treating Different Type of Diabetes. Oxid Med Cell Longev. 2018; 2018:1-12. Doi: 10.1155/2018/4757893
Qasim M, Udomluck N, Chang J, Park H, Kim K. Antimicrobial activity of silver nanoparticles encapsulated in poly-N-isopropylacrylamide-based polymeric nanoparticles. Int J Nanomedicine. 2018; 13:235-249. Doi: 10.2147/IJN.S153485
Yan S, Jiang C, Guo J, Fan Y, Zhang Y. Synthesis of Silver Nanoparticles Loaded onto Polymer-Inorganic Composite Materials and Their Regulated Catalytic Activity. Polymers. 2019; 11(3):401. Doi: 10.3390/polym11030401
Mohamad Kasim AS, Ariff AB, Mohamad R, Wong FWF. Interrelations of Synthesis Method, Polyethylene Glycol Coating, Physico-Chemical Characteristics, and Antimicrobial Activity of Silver Nanoparticles. Nanomaterials. 2020; 10(12):2475. Doi: 10.3390/nano10122475
De Matteis V, Cascione M, Toma CC, Albanese G, De Giorgi ML, Corsalini M, Rinaldi R. Silver Nanoparticles Addition in Poly(Methyl Methacrylate) Dental Matrix: Topographic and Antimycotic Studies. Int J Mol Sci. 2019; 20(19):4691. Doi: 10.3390/ijms20194691
Velgosova O, Mačák L, Múdra E, Vojtko M, Lisnichuk M. Preparation, Structure, and Properties of PVA–AgNPs Nanocomposites. Polymers. 2023; 15(2):379. Doi: 10.3390/polym15020379
Wulandari IO, Pebriatin BE, Valiana V, Hadisaputra S, Ananto AD, Sabarudin A. Green Synthesis of Silver Nanoparticles Coated by Water Soluble Chitosan and Its Potency as Non-Alcoholic Hand Sanitizer Formulation. Materials. 2022; 15(13):4641. Doi: 10.3390/ma15134641
Aryanti PTP, Sianipar M, Zunita M, Wenten IG. Modified membrane with antibacterial properties. Membr Water Treat. 2017; 8(5):463-481. Doi: 10.12989/MWT.2017.8.5.463
Desai N, Rana D, Salave S, Gupta R, Patel P, Karunakaran B, Sharma A, Giri J, Benival D, Kommineni N. Chitosan: A Potential Biopolymer in Drug Delivery and Biomedical Applications. Pharmaceutics. 2023; 15(4):1313. Doi: 10.3390/pharmaceutics15041313
Abourehab MAS, Pramanik S, Abdelgawad MA, Abualsoud BM, Kadi A, Ansari MJ, Deepak A. Recent Advances of Chitosan Formulations in Biomedical Applications. Int J Mol Sci. 2022; 23(18):10975. Doi: 10.3390/ijms231810975
Yayan R, Ine S, Opi N, Zamzam MY, Rima YS. Formulasi dan uji stabilitas gel hand sanitizer ekstrak etanol buah belimbing wuluh (Averrhoa bilimbi L.) konsentrasi 1% dan 3%: formulation and stability test of hand sanitizer gel contain 1% and 3% ethanol extract of belimbing wuluh (Averrhoa bilimbi L.). Med Sains J Ilm Kefarmasian. 2023; 5(2):209-220. Doi: 10.37874/ms.v5i2.829
Jain A, Jain R, Jain S. Sterilization of Glassware; Preparation and Sterilization of Media. In: Basic Techniques in Biochemistry, Microbiology and Molecular Biology. Springer Protocols Handbooks. Springer US; 2020; 93-99. Doi: 10.1007/978-1-4939-9861-6_28
Sharma A. A Review on the Effect of Organic and Chemical Fertilizers on Plants. Int J Res Appl Sci Eng Technol. 2017; V(II):677-680. Doi: 10.22214/ijraset.2017.2103
Rahman A, Kumar S, Bafana A, Lin J, Dahoumane SA, Jeffryes C. A Mechanistic View of the Light-Induced Synthesis of Silver Nanoparticles Using Extracellular Polymeric Substances of Chlamydomonas reinhardtii. Molecules. 2019; 24(19):3506. Doi: 10.3390/molecules24193506
Assylbekova G, Alotaibi HF, Yegemberdiyeva S, et al. Sunlight induced synthesis of silver nanoparticles on cellulose for the preparation of antimicrobial textiles. J Photochem Photobiol. 2022; 11:100134. Doi: 10.1016/j.jpap.2022.100134
Chutrakulwong F, Thamaphat K, Limsuwan P. Photo-irradiation induced green synthesis of highly stable silver nanoparticles using durian rind biomass: effects of light intensity, exposure time and pH on silver nanoparticles formation. J Phys Commun. 2020; 4(9):095015. Doi: 10.1088/2399-6528/abb4b5
Bhamare VS, Kulkarni RM, Parwaz Khan AA. Adsorptive removals of pollutants using aerogels and its composites. In: Advances in Aerogel Composites for Environmental Remediation. Elsevier; 2021; 171-199. Doi: 10.1016/B978-0-12-820732-1.00010-2
Habsi FSA, Dholi HMA, Al-musallami ST. Green synthesis, characterization and optimization of silver nanoparticles using honey and antimicrobial study with food supplements. Indian J Nat Prod Resour. 2019; 10(2):150-157. Doi: 10.56042/ijnpr.v10i2.23788
Bélteky P, Rónavári A, Zakupszky D, Boka E, Igaz N, Szerencsés B, Pfeiffer I, Vágvölgyi C, Kiricsi M, Kónya Z. Are Smaller Nanoparticles Always Better? Understanding the Biological Effect of Size-Dependent Silver Nanoparticle Aggregation Under Biorelevant Conditions. Int J Nanomedicine. 2021; 16:3021-3040. Doi: 10.2147/IJN.S304138
Skomorokhova EA, Sankova TP, Orlov IA, Savelev AN, Magazenkova DN, Pliss MG, Skvortsov AN, Sosnin IM, Kirilenko DA, Grishchuk IV, Sakhenberg EI, Polishchuk EV, Brunkov PN, Romanov AE, Puchkova LV, Ilyechova EY. Size-Dependent Bioactivity of Silver Nanoparticles: Antibacterial Properties, Influence on Copper Status in Mice, and Whole-Body Turnover. Nanotechnol Sci Appl. 2020; 13:137-157. Doi: 10.2147/NSA.S287658
Yan K, Xu F, Wei W, Yang C, Wang D, Shi X. Electrochemical synthesis of chitosan/silver nanoparticles multilayer hydrogel coating with pH-dependent controlled release capability and antibacterial property. Colloids Surf B Biointerfaces. 2021; 202:111711. Doi: 10.1016/j.colsurfb.2021.111711
Hameed AZ, Raj SA, Kandasamy J, Baghdadi MA, Shahzad MA. Chitosan: A Sustainable Material for Multifarious Applications. Polymers. 2022; 14(12):2335. Doi: 10.3390/polym14122335
Lincho J, Martins RC, Gomes J. Paraben Compounds—Part I: An Overview of Their Characteristics, Detection, and Impacts. Appl Sci. 2021; 11(5):2307. Doi: 10.3390/app11052307
Lukić M, Pantelić I, Savić SD. Towards Optimal pH of the Skin and Topical Formulations: From the Current State of the Art to Tailored Products. Cosmetics. 2021; 8(3):69. Doi: 10.3390/cosmetics8030069
Yang C, Wang Y, Chen L. Fabrication, characterization and controlled release properties of oat protein gels with percolating structure induced by cold gelation. Food Hydrocoll. 2017; 62:21-34. Doi: 10.1016/j.foodhyd.2016.07.023
Dong Y, Zhu H, Shen Y, Zhang W, Zhang L. Antibacterial activity of silver nanoparticles of different particle size against Vibrio Natriegens. Mukherjee A, ed. PLOS ONE. 2019; 14(9):e0222322. Doi: 10.1371/journal.pone.0222322
Cinteza L, Scomoroscenco C, Voicu S, Nistor C, Nitu S, Trica B, Jecu ML, Petcu C. Chitosan-Stabilized Ag Nanoparticles with Superior Biocompatibility and Their Synergistic Antibacterial Effect in Mixtures with Essential Oils. Nanomaterials. 2018; 8(10):826. Doi: 10.3390/nano8100826
Breijyeh Z, Jubeh B, Karaman R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules. 2020; 25(6):1340. Doi: 10.3390/molecules25061340