Physicochemical Characterization, Release and Penetration Study of Nanostructured Lipid Carriers Quercetin Incorporated into Membrane-Type Patches

http://www.doi.org/10.26538/tjnpr/v7i12.30

Authors

  • Fauzi Rahman Master Program in Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Kampus C Mulyorejo, Surabaya 60115, Indonesia
  • Esti Hendradi Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Kampus C Mulyorejo, Surabaya 60115, Indonesia
  • Tutiek Purwanti Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Kampus C Mulyorejo, Surabaya 60115, Indonesia

Keywords:

Liquid Lipid, Solid Lipid, Membrane-Type Patch, Quercetin, Nanostructured Lipid Carrier

Abstract

Quercetin is a bioactive flavonoid that possesses anti-inflammatory, antioxidant, and osteoarthritic properties. Nevertheless, quercetin does possess several limitations, including poor solubility, degradation in the gastrointestinal tract, and inadequate transdermal absorption. To address this issue, quercetin is incorporated into a nanostructured lipid carrier (NLC). The NLC is then enclosed in a membrane patch, which acts as a reservoir to maintain the stability of the drug content. The aim of this study was to investigate the physicochemical properties, release kinetics, and penetration of quercetin when formulated as NLC and incorporated into a membrane-type patch. Quercetin-loaded NLC was manufactured utilizing high shear homogenization using stearic acid as the solid lipid and oleic acid as the liquid lipid in various ratios such as 6:4, 7:3, and 8:2. Furthermore, the NLC was poured over the drug reservoir in a 3.8 cm diameter backing layer mold and covered with membrane solution. The physicochemical characteristics evaluated include particle size, polydispersity index, pH, viscosity, zeta potential, entrapment efficiency, thickness, humidity, flatness, drug content, homogeneity, release study and penetration. The result showed that Formula 1 had good characteristics among other formulas with a particle size of 533 ± 50 nm, PDI of 0.343 ± 0.01, viscosity of 322 ± 12 cps, pH of 5.84 ± 0.07, thickness of 0.32 ± 0.02 mm and produced the highest release and flux penetration, namely 0.6517 ± 0.02 μg/cm2/min and 0.0013 μg/cm2/min, respectively. NLC as reservoir in membrane-type patch with higher concentration of liquid lipids could increase release and flux penetration.

Author Biographies

Esti Hendradi, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Kampus C Mulyorejo, Surabaya 60115, Indonesia

Nanotechnology and Drug Delivery System Research Group, Faculty of Pharmacy, Universitas Airlangga, Campus C Mulyorejo, Surabaya 60115, Indonesia

Tutiek Purwanti, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Kampus C Mulyorejo, Surabaya 60115, Indonesia

Nanotechnology and Drug Delivery System Research Group, Faculty of Pharmacy, Universitas Airlangga, Campus C Mulyorejo, Surabaya 60115, Indonesia

References

Batiha GES, Beshbishy AM, Ikram M, Mulla ZS, El-Hack MEA, Taha AE, Algammal AM, Elewa YHA. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: quercetin. Foods. 2020; 9:374. Doi: 10.3390/foods9030374

Chen T, Zhang X, Zhu G, Liu H, Chen J, Wang Y, He X. Quercetin inhibits TNF-α induced HUVECs apoptosis and inflammation via downregulating NF-kB and AP-1 signaling pathway in vitro. Medicine. 2020; 99(38): e22241. Doi: 10.1097/MD.0000000000022241

Riva A, Ronchi M, Petrangolini G, Bosisio S, Allegrini P. Improved oral absorption of quercetin from quercetin Phytosome®, a new delivery system based on food grade lecithin. Eur. J. Drug Metab. Pharmacokinet. 2019; 44(2):169–177. Doi: 10.1007/s13318-018-0517-3

Protopapa C, Siamidi A, Pavlou P, Vlachou M. Excipients used for modified nasal drug delivery: a mini-review of the recent advances. Materials. 2022; 15(19):6547. Doi: 10.3390/ma15196547

Cai X, Fang Z, Dou J, Yu A, Zhai G. Bioavailability of quercetin: problems and promises. Curr. Med. Chem. 2013; 20(20):2572–2582. Doi: 10.2174/09298673113209990120

Mura P, Maestrelli F, D’Ambrosio M, Luceri C, Cirri M. Evaluation and comparison of solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as vectors to develop hydrochlorothiazide effective and safe pediatric oral liquid formulations. Pharmaceutics. 2021; 13(4):437. Doi: 10.3390/pharmaceutics13040437

Aditya NP, Macedo AS, Doktorovova S, Souto EB, Kim S, Chang P-S, Ko S. Development and evaluation of lipid nanocarriers for quercetin delivery: A comparative study of solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), and lipid nanoemulsions (LNE). LWT - Food Sci. Technol. 2014; 59(1):115–121. Doi: 10.1016/j.lwt.2014.04.058

Sobczyński J, Bielecka G. Nanostructure lipid carriers. in: nanoparticles in pharmacotherapy. Elsevier 2019; 275–309. Doi: 10.1016/B978-0-12-816504-1.00006-5

Hendradi E, Rosita N, Rahmadhanniar E. Effect of lipid ratio of stearic acid and oleic acid on characteristics of nanostructure lipid carrier (NLC) system of diethylammonium diclofenac. Indones J. Pharm. 2017; 28(4):198. Doi: 10.14499/indonesianjpharm28iss4pp198

Makoni PA, Wa Kasongo K, Walker RB. Short term stability testing of efavirenz-loaded solid lipid nanoparticle (SLN) and nanostructured lipid carrier (NLC) dispersions. Pharmaceutics. 2019; 11(8):397. Doi: 10.3390/pharmaceutics11080397.

Wu K-W, Sweeney C, Dudhipala N, Lakhani P, Chaurasiya ND, Tekwani BS, majumdar S. Primaquine loaded solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), and nanoemulsion (NE): effect of lipid matrix and surfactant on drug entrapment, in vitro release, and ex vivo hemolysis. AAPS PharmSciTech. 2021; 22(7):240. Doi: 10.1208/s12249-021-02108-5

Sathyanarayanana T, Sudheer P, Jacob E, Sabu MM. Development and evaluation of nanostructured lipid carriers for transdermal delivery of ketoprofen. Fabad. J. Pharm. Sci. 2023; 48(1): 105-124. Doi: 10.55262/fabadeczacilik.1126288

Oza NA, Sahu AR, Patel DM, Patel PU, Patel LD, Koshia HG. Studies on optimization of reservoir-type transdermal patch using carvedilol using 32 full factorial design. Int J Res Med. 2013; 2(4):84-89.

Erawati T, Arifiani RA, Miatmoko A, Hariyadi DM, Rosita N, Purwanti T. The effect of peppermint oil addition on the physical stability, irritability, and penetration of nanostructured lipid carrier coenzym Q10. J Pub Health Afr. 2023; 14(S1):2515. Doi: 10.4081/jphia.2023.2515

Higginbotham, RS. A Cone and Plate Viscometer. J. Sci. Instrum. 2002; 27(5):139. Doi: 10.1088/0950-7671/27/5/308

Suyuti A, Hendradi E, Purwanti T. Effect of different lipid ratios on physicochemical stability and drug release of nanostructured lipid carriers loaded coenzyme Q10. JFIKI 2023; 10(1): 44-53. Doi: 10.20473/jfiki.v10i12023.44-53

Prasad G, Shivappa NN, Avinash S, Suryawanshi D, Porwal A, Vijay S. Formulation and evaluation of transdermal patch containing antihistamin drugs bilastine. Int. J. Biol. Pharm. Allied Sci. 2021; 10(12): 244-253. Doi: 10.31032/IJBPAS/2021/10.12.2025

Bhagawan WS, Atmaja RRD, Atiqah SN. Optimization and quercetin release test of moringa leaf extract (moringa oleifera) in gel-microemulsion preparation. J. Islamic Pharm. 2017; 2(2):34-42. Doi: 10.18860/jip.v2i2.4508

Couto A, Fernandes R, Cordeiro MNS, Reis SS, Riberio RT, Pessoa AM. Dermic diffusion and stratum corneum: a state of the art review of mathematical models. Elsevier. 2014; 177:74-83. Doi: 10.1016/j.jconrel.2013.12.005

Bhatt S, Sharma JB, Kamboj R, Kumar M, Saini V, Mandge S. Design and optimization of febuxostat-loaded nano lipid carriers using full factorial design. Turk J Pharm Sci. 2021; 18(1):61-67. Doi: 10.4274/tjps.galenos.2019.32656.

Apostolou M, Assi S, Fatokun AA, Khan I. The effects of solid and liquid lipids on the physicochemical properties of nanostructured lipid carriers. J. Pharm. Sci. 2021; 110:2859–2872. Doi: 10.1016/j.xphs.2021.04.012

Suyuti A, Hendradi E, Purwanti T. Physicochemical characteristics, entrapment efficiency, and stability of nanostructured lipid carriers loaded coenzyme q10 with different lipid ratios. J. Res. Pharm. 2023; 27(3):1134–1142. Doi: 10.29228/jrp.404

Sivadasu Praveen DVG, Srivastava A, Osmani RAM. Formulation and evaluation of nanostructured lipid carrier (NLC) for glimepiride. Der Pharm Lett 2016; 8:251–256

Shawky S, Makled S, Awaad A, Boraie N. Quercetin loaded cationic solid lipid nanoparticles in a mucoadhesive in situ gel—a novel intravesical therapy tackling bladder cancer. Pharmaceutics. 2022; 14:2527. Doi: 10.3390/pharmaceutics14112527

Moghimipour E, Farsimadan N, Salimi A. Ocular delivery of quercetin using microemulsion system: design, characterization, and ex-vivo transcorneal permeation. Iran J Pharm Res. 2022; 21(1):e127486. Doi: 10.5812/ijpr-127486

Hendradi E, Isnaeni, Patimah R. The performance of nanostructured lipid carrier (NLC) incorporated transdermal patch coenzym Q10: effect of lipid ratio as drug reservoir and hpmc 606 as rate controlling membrane. Int. J. Pharm. Res. Health Sci. 2018; 6:2796–2800. Doi: 10.21276/ijprhs.2018.05.09

Ali FR, Shoaib MH, Yousuf RI, Ali SA, Imtiaz MS, Bashir L, Naz S. Design, development, and optimization of dexibuprofen microemulsion based transdermal reservoir patches for controlled drug delivery. Biomed Res. Int. 2017;1–15. Doi: 10.1155/2017/4654958

Arunprasert K, Pornpitchanarong C, Rojanarata T, Ngawhirunpat T, Opanasopit P, Patrojanasophon P. Bioinspired ketoprofen-incorporated polyvinylpyrrolidone/polyallylamine/ polydopamine hydrophilic pressure-sensitive adhesives patches with improved adhesive performance for transdermal drug delivery. Eur J Pharm Biopharm. 2022; 181:207–217. Doi: 10.1016/j.ejpb.2022.11.007

Hirlekar SDS, Bhairy S, Bhairy S, Hirlekar R, Hirlekar R. Preparation and characterization of oral nanosuspension loaded with curcumin. Int. J. Pharm. Pharm. 2018; 10:90. Doi: 10.22159/ijpps.2018v10i6.22027

Antunes Rocha HV, Augusto R de S, Prado LD, De Carvalho EM. Characterization of nimesulide and development of immediate release tablets. Eclét Quím J. 2019; 44:20–35. Doi: 10.26850/1678-4618eqj.v44.3.2019.p20-35

Kim S, Abdella S, Abid F, Afinjuomo F, Youssef SH, Holmes A, Song Y, Vaidya S, Garg S. Development and optimization of imiquimod-loaded nanostructured lipid carriers using a hybrid design of experiments approach. Int J Nanomedicine. 2023; 18:1007–1029. Doi: 10.2147/IJN.S400610

Krambeck K, Santos D, Otero-Espinar F, Sousa Lobo JM, Amaral MH. Lipid nanocarriers containing Passiflora edulis seeds oil intended for skin application. Colloids Surf B Biointerfaces. 2020; 193:111057. Doi: 10.1016/j.colsurfb.2020.111057

Zeb A, Arif ST, Malik M, Shah FA, Din FU, Qureshi OS, Lee E-S, Lee G-Y, Kim J-K. Potential of nanoparticulate carriers for improved drug delivery via skin. J Pharm Investig. 2019; 49:485–517. Doi: 10.1007/s40005-018-00418-8

Borriello A, Miele NA, Masi P, Cavella S. Rheological properties, particle size distribution and physical stability of novel refined pumpkin seed oil creams with oleogel and lucuma powder. Foods. 2022; 11:1844. Doi: 10.3390/foods11131844

Karliana D, Anwar E, Bahtiar A. Formulation and evaluation of quercetin nanoparticle gel for osteoarthritis. Int. J. Appl. Pharm. 2019; 54–59. Doi: 10.22159/ijap.2019v11i5.33191

Published

2023-12-31

How to Cite

Rahman, F., Hendradi, E., & Purwanti, T. (2023). Physicochemical Characterization, Release and Penetration Study of Nanostructured Lipid Carriers Quercetin Incorporated into Membrane-Type Patches: http://www.doi.org/10.26538/tjnpr/v7i12.30. Tropical Journal of Natural Product Research (TJNPR), 7(12), 5581–5586. Retrieved from https://tjnpr.org/index.php/home/article/view/3200

Most read articles by the same author(s)