Physical Properties, Release and Penetration Tests of Membrane-Type Diclofenac Sodium Patch Using Nanostructured Lipid Carrier as Reservoir http://www.doi.org/10.26538/tjnpr/v7i12.24
Main Article Content
Abstract
Diclofenac sodium, a Non-Steroidal Anti-Inflammatory medicine, is efficacious in treating osteoarthritis. However, it might cause adverse gastrointestinal symptoms and may lead to liver metabolic complications when used orally. Hence, the development of an efficacious treatment, specifically the diclofenac sodium patch with a membrane, is imperative. The goal of this research was to identify the optimal formulation for a membrane-type diclofenac sodium patch with Nanostructured Lipid Carrier (NLC) as a reservoir, using a solvent casting technique with HPMC 606 as the rate-controlling membrane. Diclofenac sodium patch with NLC Formula 1 was determined to be the most effective formula, as it showed good physical attributes such as drug content and drug homogeneity above 85%, spherical particles, a higher release flux of 12.246 ± 0.60 µg/cm2/min1/2 compared to Formula 2 and Formula 3, and the release kinetics in all formula followed the Higuchi model. Using the most optimal patch formula, a penetration test showed a higher flux penetration of 0.329 ± 0.01 µg/cm2/min compared to the comparison, which involved a diclofenac sodium patch with physical mixture. The research suggested that diclofenac sodium patch with NLC holds significant potential as a transdermal drug delivery system.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Hendradi E, Hidayati FN, Erawati T. Characteristic of Nanostructured Lipid Carrier (NLC) diclofenac diethylammonium as function of ratio of glyceryl monostearate and caprylic acid. Res. J. Pharm. Technol. 2021; 14(3):1699-1704. Doi: 10.5958/0974-360x.2021.00302.4
Nguyen CN, Nguyen TTT, Nguyen HT, Tran TH. Nanostructured lipid carriers to enhance transdermal delivery and efficacy of diclofenac. Drug Deliv. Transl. Res. 2017; 7(5):664–673. Doi: 10.1007/s13346-017-0415-2
Awachat A, Shukla D, Bhola ND. Efficacy of Diclofenac Transdermal Patch in Therapeutic Extractions: A Literature Review. Cureus. 2022; 14(10):e30411. Doi: 10.7759/cureus.30411
Sudam KR, Suresh BR. A Comprehensive Review on: Transdermal drug delivery systems. Int. J. Biomed. Adv. Res. 2016; 7:147-159. Doi: 10.7439/ijbar.v7i4.3131
Akhtar N, Singh V, Yusuf M, Khan RA. Non-invasive drug delivery technology: development and current status of transdermal drug delivery devices, techniques and biomedical applications. Biomed. Tech (Berl). 2020; 65(3):243–272. Doi: 10.1515/bmt-2019-0019
Güngör S, Kahraman E, Erdal MS, Özsoy Y. Recent advances in biopolymer-based transdermal patches. Biopolymer. Membr Films. 2020; 195–217. Doi: 10.1016/b978-0-12-818134-8.00008-0
Koummich SA, Zoukh IM, Gorachinov F, Geskovski N, Makreski P, Dodov MG, Goracinova K. Design of ophthalmic micelles loaded with diclofenac sodium: Effect of chitosan and temperature on the block-copolymer micellization behaviour. Drug Deliv. Transl. Res. 2022; 12(6):1488-1507. Doi: 10.1007/s13346-021-01030-4
Erawati T, Agustin ED, Meldaviati G, Rohmah NN, Purwanti T, Miatmoko A, Hendradi E, Rosita N, Hariyadi DM. Effect of Peppermint Oil on the Characteristics and Physical Stability of Nanostructured Lipid Carrier-CoQ10. Trop. J. Nat. Prod. Res. 2022; 6(3):303-307. Doi: 10.26538/tjnpr/v6i3.3
Garg NK, Tandel N, Bhadada SK, Tyagi RK. Nanostructured Lipid Carrier-Mediated Transdermal Delivery of Aceclofenac Hydrogel Present an Effective Therapeutic Approach for Inflammatory Diseases. Front. Pharmacol. 2021; 12:713616. Doi: 10.3389/fphar.2021.713616
Hendradi E, Rosita N, Rahmadhanniar E. Effect of lipid ratio of stearic acid and oleic acid on characteristics of nanostructure lipid carrier (NLC) system of diethylammonium diclofenac. Indonesian J. Pharm. 2017; 28(4):198-204. Doi: 10.14499/indonesianjpharm28iss4pp19
Yew HC, Misran M. Characterization of fatty acid based nanostructured lipid carrier (NLC) and their sustained release properties. PDDBS. 2019; 2(1). Doi: 10.36877/pddbs.a0000022
Araujo VHS, da Silva PB, Szlachetka IO, da Silva SW, Fonseca-Santos B, Chorilli M, Ganassina R, de Oliveiraa GRT, da Rochaa MCO, Fernandese RP, de Carvalho Vieira Queiroza M, Azevedo RB, Muehlmann LA. The influence of NLC composition on curcumin loading under a physicochemical perspective and in vitro evaluation. Colloids Surf. 2020; 602:125070. Doi: 10.1016/j.colsurfa.2020.125070
Chandra S, Naveenkumar D, Krishnan M, Tamilselvan A. Formulation and Evaluation of Diclofenac Sodium Transdermal Patches. World J. Pharm Res. 2018; 7(02):1005-1020. Doi: 10.20959/wjpr20182-10707
Hendradi E, Patimah R. The Performance of Nanostructured Lipid Carrier (NLC) Incorporated Transdermal Patch Coenzyme Q10: Effect of Lipid Ratio as Drug Reservoir and HPMC 606 as Rate Controlling Membrane. Int. J. Pharm. Res. Health Sci. 2018; 6(5):2796-2800. Doi: 10.21276/ijprhs.2018.05.09
Shabbir M, Ali S, Farooq M, Adnan S, Yousaf M, Idrees A, Rehman K, Shahid N. Formulation factors affecting in vitro and ex vivo permeation of bisoprolol fumarate from a matrix transdermal patch. Adv. Polym. Technol. 2016; 35(3):237-247. Doi: 10.1002/adv.21546
Adhyapak AA, Desai BG. Formulation and evaluation of liposomal transdermal patch for targeted drug delivery of tamoxifen citrate for breast cancer. Indian. J. Health. Sci. Biomed. Res. 2016; 9(1):40-48. Doi: 10.4103/2349-5006.183677
Kriplani P, Sharma A, Aman PP, Chopra B, Dhingra A, Deswal G. Formulation and evaluation of transdermal patch of diclofenac sodium. GJPPS. 2018; 4(5):001-4. Doi: 10.19080/GJPPS.2018.04.555647
Christanto P, Isnaeni AM, Miatmoko A, Hendradi E. Transdermal patch loading diclofenac sodium for anti-inflammation therapy using a rat paw oedema model. In Unity in Diversity and the Standardisation of Clinical Pharmacy Services. 2017; (pp. 55-59). CRC Press.
Mutlu EC, Ficai A, Ficai D, Yildirim AB, Yildirim M, Oktar FN, Demir A. Chitosan/poly (ethylene glycol)/hyaluronic acid biocompatible patches obtained by electrospraying. Biomed Mater. 2018; 13(5):055011. Doi: https://doi.org/10.1088/1748-605x/aad368
Hendradi E, Rahayuningtyas E, Erawati T. The Effect of Polymers Ratio Carboxymethyl Chitosan, Polyvinyl Pyrolidone K-30, and Ethyl Cellulose N22 on Physico-Chemical Characteristics and Drug Release from Matrix Type Diclofenac Potassium Patch. JFIKI. 2023; 10(1):54-61. Doi: 10.20473/jfiki.v10i12023.54-61
Shirsand SB, Ladhane GM, Prathap S, Prakash PV. Design and evaluation of matrix transdermal patches of meloxicam. RGUHS J. Pharm. Sci. 2012; 2(4):58-65.
Shrotriya S, Ranpise N, Satpute P, Vidhate B. Skin targeting of curcumin solid lipid nanoparticles-engrossed topical gel for the treatment of pigmentation and irritant contact dermatitis. Artif Cells Nanomed Biotechnol. 2018; 46(7):1471-1482. Doi: 10.1080/21691401.2017.1373659
Safitri FI, Nawangsari D, Febrina D. Overview: Application of carbopol 940 in gel. In International Conference on Health and Medical Sciences (AHMS 2020). 2021; (pp. 80-84). Atlantis Press. Doi: 10.2991/ahsr.k.210127.018
Usman JT, Aliyah A, Nur JF, Nirmayanti N, Dian A. Combinatorial Approach of Polymeric Patches and Solid Microneedles for Improved Transdermal Delivery of Valsartan: A Proof-of-Concept Study. Biointerface Res. Appl. Chem. 2023; 13:314. Doi: 10.33263/BRIAC134.314
Singh D, Tiwari BK. Formulation And Development Of Carbamazepine Transdermal Patches: In Vitro And Ex Vivocharacterization. J. Pharm. Negat. Results. 2022; 4530-4536. Doi: 10.47750/pnr.2022.13.S10.548
Pratiwi G, Susanti S, Shiyan S. Application of factorial design for optimization of PVC-HPMC polymers in matrix film ibuprofen patch-transdermal drug delivery system. Indonesian J. Chemom.Pharm. Anal. 2020; 1(1):11-21. Doi: 10.22146/ijcpa.486
Hendradi E, Riantiny AIKE, Hasiholan J, Miatmoko A. The Effect of Different Ratios of the Hydrophilic Polymers Sodium Alginate 20cP and Hydroxy Propyl Methyl Cellulose E15 on the Physicochemical Characteristics of Meloxicam Patch. In Proceedings of International Conference on Applied Pharmaceutical Sciences (ICoAPS). 2018. Doi: 10.2139/ssrn.3489586
Franco P, De Marco I. The Use of Poly (N-vinyl pyrrolidone) in the Delivery of Drugs: A Review. Polymers. 2020; 12(5):1114. Doi: 10.3390/polym12051114
Williams AC, Barry BW. Penetration enhancers. Adv. Drug Deliv. Rev. 2012; 64:128-137. Doi: 10.1016/j.addr.2012.09.032
Jhawat VC, Saini V, Kamboj S, Maggon N. Transdermal drug delivery systems: approaches and advancements in drug absorption through skin. Int J Pharm Sci Rev Res. 2013; 20(1): 47-56.
Paarakh MP, Jose PANI, Setty CM, Peter GV. Release Kinetics – Concepts and Applications. IJPRT. 2019; 8(1):12–20. Doi: 10.31838/ijprt/08.01.02
Yu L, Madsen FB, Eriksen SH, Andersen AJ, Skov AL. A reliable quantitative method for determining CBD content and release from transdermal patches in Franz cells. Phytochem Anal. 2022; 33(8):1257-1265. Doi: 10.1002/pca.3188
Shabbir M, Ali S, Raza M, Sharif A, Akhtar MF, Manan A, Fazli AR, Younas N, Manzoor I. Effect of hydrophilic and hydrophobic polymer on in vitro dissolution and permeation of bisoprolol fumarate through transdermal patch. Acta Pol Pharm. 2017; 74(1):187–197.
Moghddam SMM, Ahad A, Aqil M, Imam SS, Sultana Y. Optimization of nanostructured lipid carriers for topical delivery of nimesulide using Box–Behnken design approach. Artif Cells Nanomed Biotechnol. 2017; 45(3):617-624. Doi: 10.3109/21691401.2016.1167699
Mennini N, Cirri M, Maestrelli F, Mura P. Comparison of liposomal and NLC (nanostructured lipid carrier) formulations for improving the transdermal delivery of oxaprozin: Effect of cyclodextrin complexation. Int. J. Pharm. 2016; 515(1-2):684-691. Doi: 10.1016/j.ijpharm.2016.11.013
Nayak K, Katiyar SS, Kushwah V, Jain S. Coenzyme Q10 and retinaldehyde co-loaded nanostructured lipid carriers for efficacy evaluation in wrinkles. J Drug Target. 2018; 26(4):333-344. Doi: 10.1080/1061186x.2017.1379527