Antioxidant Properties of Curcuma caesia Extracted Using Natural Deep Eutectic Solvent http://www.doi.org/10.26538/tjnpr/v7i12.17

Main Article Content

Sri Kartini
Mohd F.A. Bakar
Fazleen I.A. Bakar
Susi Endrini
Yan Hendrika
Siti Juariah

Abstract

Plants serve as viable sources for obtaining natural antioxidants. Among the potentially rich sources of antioxidants, black turmeric rhizome (Curcuma caesia) stands out. Traditionally, the conventional method for extracting bioactive chemicals from plants has relied on the utilisation of organic solvents, despite its recognised environmental drawbacks. However, an alternate technique that aligns with environmental consciousness involves the application of natural deep eutectic solvents (NADES). This study targeted to create and characterize four types of NADES designated as follows: NADES 1-citric acid:sucrose (1:1); NADES 2-sucrose:glucose:fructose (1:1:1); NADES 3-choline chloride:glycerol (1:1:2); and NADES 4- glycerol:urea (1:1) at 70°C. The investigation involved the determination of the physical properties of these NADES, including pH, temperature, and density. All formulated NADES were used to ascertain the entire phenolic and flavonoid content of C. caesia rhizomes, and their antioxidant potential was determine using 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging and ferric reducing antioxidant power (FRAP) methods. The results revealed a pH sequence of NADES 1<NADES 2 <NADES 3 <NADES 4, in which NADES 1 exhibited the highest density among the formulations. The temperature of NADES was obtained at 65°C and 70°C. The phenolic content was notably pronounced in NADES 1, 2 and 3 and NADES 1 and 2 yielded high flavonoid content. Remarkably, NADES 2 demonstrated the most potent antioxidant activity among the formulated solvents, as determined using both the DPPH and FRAP methods. In conclusion, NADES is an encouraging tool aimed at the extraction of secondary metabolites from plant.

Downloads

Download data is not yet available.

Article Details

How to Cite
Kartini, S., Bakar, M. F., Bakar, F. I., Endrini, S., Hendrika, Y., & Juariah, S. (2023). Antioxidant Properties of Curcuma caesia Extracted Using Natural Deep Eutectic Solvent: http://www.doi.org/10.26538/tjnpr/v7i12.17. Tropical Journal of Natural Product Research (TJNPR), 7(12), 5479-5485. https://tjnpr.org/index.php/home/article/view/3183
Section
Articles
Author Biographies

Sri Kartini, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Hub Pendidikan Tinggi Pagoh, KM1, Jalan Panchor, 84600 Muar, Johor, Malaysia

Faculty of Pharmacy and Health Sciences, Abdurrab University, Jl. Riau Ujung No. 73, Tampan, Air Hitam, Payung Sekaki, Pekanbaru, Riau 28291, Indonesia

Siti Juariah, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Hub Pendidikan Tinggi Pagoh, KM1, Jalan Panchor, 84600 Muar, Johor, Malaysia

Faculty of Pharmacy and Health Sciences, Abdurrab University, Jl. Riau Ujung No. 73, Tampan, Air Hitam, Payung Sekaki, Pekanbaru, Riau 28291, Indonesia

How to Cite

Kartini, S., Bakar, M. F., Bakar, F. I., Endrini, S., Hendrika, Y., & Juariah, S. (2023). Antioxidant Properties of Curcuma caesia Extracted Using Natural Deep Eutectic Solvent: http://www.doi.org/10.26538/tjnpr/v7i12.17. Tropical Journal of Natural Product Research (TJNPR), 7(12), 5479-5485. https://tjnpr.org/index.php/home/article/view/3183

References

Liu Z, Ren Z, Zhang J, Chuang CC, Kandaswamy E, Zhou T, Zuo L. Role of ROS and nutritional antioxidants in human diseases. Front Physiol. 2018;9:477. doi:10.3389/fphys.2018.00477

Juan CA, Pérez de la Lastra JM, Plou FJ, Pérez-Lebeña E. The chemistry of reactive oxygen species (ros) revisited: outlining their role in biological macromolecules (dna, lipids and proteins) and induced pathologies. Int. J. Mol. Sci. 2021; 22(9):4642. https://doi.org/10.3390/ijms22094642

Taghvaei M, Jafari SM. Application and stability of natural antioxidants in edible oils in order to substitute synthetic additives. J Food Sci Technol. 2015;52(3):1272-1282. doi:10.1007/s13197-013-1080-1

Xu D-P, Li Y, Meng X, Zhou T, Zhou Y, Zheng J, Zhang JJ, Li HB. Natural antioxidants in foods and medicinal plants: extraction, assessment and resources. Int J Mol Sci. 2017;18(1). doi:10.3390/ijms18010096

Lourenço SC, Moldão-Martins M, Alves VD. Antioxidants of natural plant origins: from sources to food industry applications. Molecules. 2019;24(22). doi:10.3390/molecules24224132

Perdani MS, Hasibuan AK. Analisis informasi tanaman herbal melalui media sosial ditengah masyarakat pada pandemi covid-19: sebuah tinjauan literatur. BENCOOLEN J Pharm. 2021;1(1):11–25. doi:10.33369/bjp.v1i1.15589

Abu Bakar MF, Mohamed M, Rahmat A, and S, Fry J. Cytotoxicity and polyphenol diversity in selected parts of Mangifera pajang and Artocarpus odoratissimus fruits. Nutr & Food Sci. 2010;40:29-38. doi:10.1108/00346651011015890

Abu Bakar MF, Ahmad NE, Suleiman M, Rahmat A, Isha A. Garcinia dulcis Fruit Extract Induced Cytotoxicity and Apoptosis in HepG2 Liver Cancer Cell Line. Biomed Res Int. 2015;2015. doi:10.1155/2015/916902

Juariah S, Bakar FIA, Bakar MFA, Endrini S, Kartini S, Mohamad A, Hanafi AF. Antibacterial activity of red ginger (Zingiber officinale var. rubrum) and black turmeric (Curcuma caesia) extracts as growth inhibitors of Klebsiella pneumonia: Trop J Nat Prod Res. 2023;7 (8 SE-Articles): 3658-3665. http://www.doi.org/10.26538/tjnpr/v7i8.14.

Herisman MW, Gani AP, Murwanti R. Effect of Curcuma mangga and Curcuma longa on oxidative stress-related diseases and ros level : A recent study. Trop J Nat Prod Res. 2022;6(May):668-672.

Ekasari PE, Widarti S, Sumitro SB. Indonesian I. The analysis of antioxidant activity and capacity of boiled and infused indonesian herbals. Trop J Nat Prod Res. 2023;7(January):2145-2151.

Reenu J, Azeez S, Bhageerathy C. In vitro antioxidant potential in sequential extracts of Curcuma caesia roxb. Rhizomes. Indian J Pharm Sci. 2015;77(1):41-48. doi:10.4103/0250-474X.151596

Kartini S, Juariah S, Mardhiyani D, Abu Bakar MF, Abu Bakar FI, Endrini S. phytochemical properties, antioxidant activity and α-amilase inhibitory of Curcuma caesia. J Adv Res Appl Sci Eng Technol. 2023;30(1):255-263. doi:10.37934/araset.30.1.255263

Juariah S, Bakar FIA, Bakar MFA, Endrini S. Antibacterial potential of Curcuma caesia Roxb ethanol extract against nosocomial infections. Bali Med J. 2023;12(2):1959-1963. doi:10.15562/bmj.v12i2.4320

Udayani NYW. Pemanfaatan rimpang kunyit hitam (Curcuma caesia Roxb.) sebagai obat tradisional. Emasains. 2022:54-62. DOI : 10.5281/zenodo.6409889

Bentley J, Olsen EK, Moore JP, Farrant JM. The phenolic profile extracted from the desiccation-tolerant medicinal shrub Myrothamnus flabellifolia using natural deep eutectic solvents varies according to the solvation conditions. Phytochemistry. 2020;173.

Devi HP, Mazumder PB, Devi LP. Antioxidant and antimutagenic activity of Curcuma caesia Roxb. rhizome extracts. Toxicol Reports. 2015;2:423-428. doi:10.1016/j.toxrep.2014.12.018

Jain A, Jain P, Parihar DK. comparative study of in-vitro antidiabetic and antibacterial activity of non-conventional Curcuma species. J Biol Act Prod from Nat. 2019;9(6):457-464. doi:10.1080/22311866.2019.1710253

Mukunthan KS, Satyan RS, Patel TN. Pharmacological evaluation of phytochemicals from South Indian Black Turmeric (Curcuma caesia Roxb.) to target cancer apoptosis J Ethnopharmacol. 2017;209:82-90. doi:10.1016/j.jep.2017.07.021

Lesjak M, Beara I, Simin N, Pintac D, Majkic T, Becvalac K, Orcic D, Mimica-Dukic N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. 2018;40:68-75. doi:10.1016/j.jff.2017.10.047

Rahaman ST, Mondal S. Flavonoids: A vital resource in healthcare and medicine. Pharm Pharmacol Int J. 2020;8(2):91-104. doi:10.15406/ppij.2020.08.00285

Sa’adah H, Nurhasnawati H. Perbandingan pelarut etanol dan air pada pembuatan ekstrak umbi bawang tiwai (Eleutherine americana merr) menggunakan metode maserasi. J Ilm Manuntung. 2017;1(2):149-153. doi:10.51352/jim.v1i2.27

Riasari H, Fitriansyah SN, Hoeriah IS. Perbandingan metode fermentasi, ekstraksi, dan kepolaran pelarut terhadap kadar total flavonoid dan steroid pada daun sukun (Artocarpus altilis (Parkinson) Fosberg). J Sains dan Teknol Farm Indones. 2022;11(1):1. doi:10.58327/jstfi.v11i1.165

García-Roldán A, Piriou L, Jauregi P. Natural deep eutectic solvents as a green extraction of polyphenols from spent coffee ground with enhanced bioactivities. Front Plant Sci. 2022;13:1072592. doi:10.3389/fpls.2022.1072592

Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK. deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc. 2004;126(29):9142-9147. doi:10.1021/ja048266j

Hayyan M, Ali M, Hayyan A, Al-saadi MA, Alnashef IM. Are deep eutectic solvents benign or toxic ? Chemosphere. 2013;90(7):2193-2195. doi:10.1016/j.chemosphere.2012.11.004

Espino M, Fernández MDLÁ, Gomez FJ V, Silva MF. Natural designer solvents for greening analytical chemistry trends in analytical chemistry natural designer solvents for greening analytical chemistry. 2015;76126-136. doi:10.1016/j.trac.2015.11.006

Jhong HR, Wong DSH, Wan CC, Wang YY, Wei TC. A novel deep eutectic solvent-based ionic liquid used as electrolyte for dye-sensitized solar cells. Electrochem commun. 2009;11(1):209-211. doi:10.1016/j.elecom.2008.11.001

Singh BS, Lobo HR, Shankarling GS. Choline chloride based eutectic solvents: Magical catalytic system for carbon-carbon bond formation in the rapid synthesis of β-hydroxy functionalized derivatives. Catal Commun. 2012;24:70-74. doi:10.1016/j.catcom.2012.03.021

Choi YH, Spronsen J Van, Dai Y, Dai Y, Verberne M, Hollmann F, Arends IW, Witkamp GJ, Verpoorte R. Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology ? Plant Physiol. 2011;156(4):1701-1705. doi:10.1104/pp.111.178426

Mansinhos I, Gonçalves S, Rodríguez-Solana R, Ordóñez-Díaz JL, Moreno-Rojas JM, Romano A. Ultrasonic-assisted extraction and natural deep eutectic solvents combination: a green strategy to improve the recovery of phenolic compounds from Lavandula pedunculata subsp. lusitanica (Chaytor) Franco. Antioxidants. 2021, 10, 582.https://doi.org/10.3390/antiox10040582

Dheyab AS, Abu Bakar MF, AlOmar M, Sabran SF, Muhamad Hanafi AF, Mohamad A. Deep Eutectic Solvents (DESs) as green extraction media of beneficial bioactive phytochemicals. Separations. 2021;8(10). doi:10.3390/separations8100176

Abu Bakar MF, Mohamed M, Rahmat A, Fry J. Phytochemicals and antioxidant activity of different parts of bambangan (Mangifera pajang) and tarap (Artocarpus odoratissimus). Food Chem. 2009;113(2):479-483. doi:10.1016/j.foodchem.2008.07.081

Egharevba E, Chukwuemeke-Nwani P, Eboh U, Okoye E, Bolanle IO, Oseghale IO, Imieje VO, Erharuyi O, Falodun A. Evaluation of the antioxidant and hypoglycaemic potentials of the leaf extracts of Stachytarphyta jamaicensis (Verbenaceae). Trop J Nat Prod Res. 2019;3(5):170-174. doi:10.26538/tjnpr/v3i5.4

Okolie NP aulinu., Falodun A, Davids O. Evaluation of the antioxidant activity of root extract of pepper fruit (Dennetia tripetala), and it’s potential for the inhibition of lipid peroxidation. Afr J Tradit Complement Altern Med. 2014;11(3):221-227. doi:10.4314/ajtcam.v11i3.31

Pires I V, Sakurai YC, Ferreira NR, Moreira SG, da Cruz Rodrigues AM, da Silva LH. Elaboration and characterization of natural deep eutectic solvents (nadess): application in the extraction of phenolic compounds from pitaya. Molecules. 2022;27(23). doi:10.3390/molecules27238310

Garc G, Aparicio S, Ullah R, Atilhan M. Deep eutectic solvents : physicochemical properties and gas separation applications. energy and fuels. Energy and Fuels. 2015, 29, 4, 2616–2644. doi:10.1021/ef5028873

Al-risheq DIM, Nasser MS, Qiblawey H, Hussein IA. Choline chloride based natural deep eutectic solvent for destabilization and separation of stable colloidal dispersions. Sep Purif Technol. 2021;255:117737. doi:10.1016/j.seppur.2020.117737

Silva DT da, Pauletto R, Cavalheiro S da S, S., Bochi, V. C., Rodrigues, E., Weber, J., de Bona da Silva, C., Morisso, F. D. P., Barcia, M. T., & Emanuelli, T. Natural deep eutectic solvents as a biocompatible tool for the extraction of blueberry anthocyanins. J Food Compos Anal. 2020;89(March):103470. doi:10.1016/j.jfca.2020.103470

Wilberta N, Sonya NT, Lydia SHR. Analisis kandungan gula reduksi pada gula semut dari nira aren yang dipengaruhi ph dan kadar air. bioedukasi. Jurnal Pendidik Biol. 2021;12(1):101. doi:10.24127/bioedukasi.v12i1.3760

Ruswandi R, Oktavia B, Azhar M. Penentuan kadar fruktosa hasil hidrolisis inulin denga DNS sebagai pengoksidasi. Eksakta. 2018;19(1):1-20.

Athariqa D, Oktapia SM, Dermawan D. Urea-formaldehid konsentrat sebagai bahan baku resin. Jurnal Teknologi Ramah Lingkungan. 2022;6:11-21.

Datu KAT, Fitriani N, Ahmad I. Pengaruh penggunaan metode lactic acid-sucrose dengan microwave assisted extraction (mae) terhadap polifenol total dari herba suruhan (Peperomia pellucida (L.) Kunth). Proceeding Mulawarman Pharm Conf. 2019;10:114-117. doi:10.25026/mpc.v10i1.373

Wei ZF, Wang XQ, Peng X, Wang, W., Zhao C.-J, Zu Y.-G., Fu Y.-J. Fast and green extraction and separation of main bioactive flavonoids from Radix Scutellariae. Ind Crops Prod. 2015;63:175-181. doi:10.1016/j.indcrop.2014.10.013

Wei Z, Qi X, Li T, Luo M., Wang W., Zu Y, & Fu Y. Application of natural deep eutectic solvents for extraction and determination of phenolics in Cajanus cajan leaves by ultra performance liquid chromatography. Sep Purif Technol. 2015;149:237-244. doi:https://doi.org/10.1016/j.seppur.2015.05.015

Ahmad I, Pertiwi AS, Kembaren YH, Rahman A, Mun’im A. Application of natural deep eutectic solvent-based ultrasonic assisted extraction of total polyphenolic and caffeine content from coffe beans (Coffea Beans L.) for instant food products. J Appl Pharm Sci. 2018;8(8):138-143. doi:10.7324/JAPS.2018.8819

Yuniarti E, Mu’mininm FCSA. Application of the natural deep eutectic solvent choline chloride-sorbitol to extract chlorogenic acid and caffeine from green coffee beans (Coffea canephora). J Appl Pharm Sci. 2019;9(3). 82-90

Maryam S, Juniasti S, Kosman R. Uji Aktivitas Antibakteri Ekstrak Etanol Buah Belimbing Wuluh (Averrhoa bilimbi L.) asal kota watampone. J Ilm As-Syifaa. 2015;7(1):60-69. doi:10.33096/jifa.v7i1.21

Theafelicia Z, Wulan SN. comparison of various methods for testing antioxidant activity (DPPH, ABTS, and FRAP) on black tea (Camellia sinensis) Zerlinda. J Teknol Pertan. 2023;24(1):35-44.

Malik A, Ahmad AR, Najib A. Pengujian aktivitas antiokidan ekstrak terpurifikasi daun teh hijau dan jati belanda. J Fitofarmaka Indones. 2017;4(2):238-240. doi:10.33096/jffi.v4i2.267

Maryam S, Baits M, Nadia A. pengukuran aktivitas antioksidan ekstrak etanol daun kelor (Moringa oleifera Lam.) menggunakan metode FRAP (Ferric Reducing Antioxidant Power). J Fitofarmaka Indones. 2016;2(2):115-118. doi:10.33096/jffi.v2i2.181

Jurić T, Mićić N, Potkonjak A, Milanov D, Dodić J, Trivunović Z, Popović BM. The evaluation of phenolic content, in vitro antioxidant and antibacterial activity of Mentha piperita extracts obtained by natural deep eutectic solvents. Food Chem. 2021;362. doi:10.1016/j.foodchem.2021.130226

Doldolova K, Bener M, Lalikoğlu M, Aşçı YS, Arat R, Apak R. Optimization and modeling of microwave-assisted extraction of curcumin and antioxidant compounds from turmeric by using natural deep eutectic solvents. Food Chem. 2021;353. doi:10.1016/j.foodchem.2021.129337

Hikmawanti NPE, Ramadon D, Jantan I, Mun’im A. Natural deep eutectic solvents (Nades): Phytochemical extraction performance enhancer for pharmaceutical and nutraceutical product development. Plants. 2021;10(10). doi:10.3390/plants10102091

Mbous YP, Hayyan M, Hayyan A, Wong WF, Hashim MA, Looi CY. Applications of deep eutectic solvents in biotechnology and bioengineering—Promises and challenges. Biotechnol Adv. 2017;35(2):105-134. doi:10.1016/j.biotechadv.2016.11.006

Vanda H, Dai Y, Wilson EG, Verpoorte R, Choi YH. Green solvents from ionic liquids and deep eutectic solvents to natural deep eutectic solvents. Comptes Rendus Chim. 2018;21(6):628-638. doi:https://doi.org/10.1016/j.crci.2018.04.002