Pentacyclic Triterpenoids from Combretum platypetalum subsp. oatesii (Rolfe) Exell (Combretaceae) Root Inhibit Sterol 14α-Demethylase Target http://www.doi.org/10.26538/tjnpr/v7i12.12
Main Article Content
Abstract
The Combretum genus, with its few investigated members, has shown evidence-based justification for its extensive study in finding natural alternatives to various maladies. One of its species, Combretum platypetalum, has been traditionally used to treat diarrhea, pneumonia, dysmenorrhea, and infertility in women, with phytochemical investigations focusing on its leaves. The plant part(s) employed in the traditional practice are not explicitly mentioned in the literature, but several therapeutic properties have been confirmed. This study is a follow-up to previous metabolomic reports and a comprehensive biological investigation of the root extract, aimed at investigating the active compounds. The root was extracted by maceration, and compounds were isolated using various chromatographic techniques. Combrenorplatypta A, arjunolic acid, betulinic acid, and lupeol (2-4) were bioguidedly isolated from C. platypetalum root for the first time. The structures of the isolated compounds were established based on spectroscopic (1D NMR, 2D NMR, IR, UV, and ECD) and spectrometric (ESIMS) data as well as time-dependent density functional theory (TD-DFT) calculations. In vitro and computational antifungal activities of the compounds were investigated; after that, molecular docking analysis of structures (1-4) versus target (sterol 14α- demethylase) binding affinity for druggability was established. The MICs of in vitro bio-investigated compounds ranged from 2.30 µM to 15 µM, while computational antifungal investigations showed MICs from 4 nM to 49.86 nM. The compounds produced over six times the activity of fluconazole, a first-line antifungal drug. This study has identified the active sites and possible mechanisms of action of molecules against fungal pathogens.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Dauda M, Musa A, Ilyas M, Abdullahi M, Haruna A. Antimicrobial potential of 2', 4'-dihydroxy-4-prenyloxychalcone combined with ciprofloxacin and fluconazole. Trop. J. Nat. Prod. Res.. 2019;3(9):277-81.
Hosseini‐Moghaddam SM, Ouédraogo A, Naylor KL, Bota SE, Husain S, Nash DM, Paterson, J M. Incidence and outcomes of invasive fungal infection among solid organ transplant recipients: a population‐based cohort study. Transpl. Infect. Dis.. 2020;22(2):e13250.
Gupta AK, Venkataraman M. Antifungal resistance in superficial mycoses. J. Dermatol. Treat.. 2022;33(4):1888-95.
Jordá T, Puig S. Regulation of ergosterol biosynthesis in Saccharomyces cerevisiae. Genes. 2020;11(7):795.
Lindo L, Cardoza RE, Lorenzana A, Casquero PA, Gutiérrez S. Identification of plant genes putatively involved in the perception of fungal ergosterol‐squalene. J. Integr. Plant Biol.. 2020;62(7):927-47.
Meshcheryakova OL, Shuvaeva GP, Sviridova TV, Tolkacheva AA, Korneeva OS. Study of the Effect of Squalene Epoxidase Activity on Squalene Biosynthesis by Yeast Saccharomyces Cerevisiae VGSh-2. KnE Life Sci.. 2022:491–500-491–500.
McCarty KD, Sullivan ME, Tateishi Y, Hargrove TY, Lepesheva GI, Guengerich FP. Processive kinetics in the three-step lanosterol 14α-demethylation reaction catalyzed by human cytochrome P450 51A1. J. Biol. Chem. 2023;299(7).
Umoh SD, Bojase G, Masesane IB, Majinda RT, Sichilongo KF. Untargeted GC–MS metabolomics to identify and classify bioactive compounds in Combretum platypetalum subsp. oatesii (Rolfe) Exell (Combretaceae). Phytochem. Anal. 2023;34(1):127-38.
Wende M, Sithole S, Fru CG, Stevens MY, Mukanganyama S. The Effects of Combining Cancer Drugs with Compounds Isolated from Combretum zeyheri Sond. and Combretum platypetalum Welw. ex MA Lawson (Combretaceae) on the Viability of Jurkat T Cells and HL-60 Cells. Biomed. Res. Int. 2021;2021.
Machingauta A, Stevens MY, Fru CG, Sithole S, Yeboah S, Mukanganyama S. Evaluation of the antiproliferative effect of β-sitosterol isolated from Combretum platypetalum Welw. ex MA Lawson (Combretaceae) on Jurkat-T cells and protection by glutathione. Adv. trad. med. 2022:1-9.
Lima GRdM, de Sales IRP, Caldas Filho MRD, de Jesus NZT, Falcão HdS, Barbosa-Filho JM, Cabral AGS, Souto AL, Tavares JF, Batista LM. Bioactivities of the Genus Combretum (Combretaceae): A Review. Molecules. 2012;17(8).
Hendiani I, Susanto A, Carolina DN, Ibrahim R, Balafif FF. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of mangosteen (Garcinia mangostana Linn.) rind extract against Aggregatibacter actinomycetemcomitans. Padjadjaran J. Dent. 2020;32(2):131-5.
Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem.. 1994;98(45):11623-7.
Grimme S, Furche F, Ahlrichs R. An improved method for density functional calculations of the frequency-dependent optical rotation. Chem. Phys. Lett.. 2002;361(3-4):321-8.
Krishnan R, Binkley JS, Seeger R, Pople JA. Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980;72(1):650-4.
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Lyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 16. Revision 01 ed. Wallingford CT: Gaussian, Inc.; 2016.
Bitew M, Desalegn T, Demissie TB, Belayneh A, Endale M, Eswaramoorthy R. Pharmacokinetics and drug-likeness of antidiabetic flavonoids: Molecular docking and DFT study. Plos one. 2021;16(12):e0260853.
Hargrove TY, Friggeri L, Wawrzak Z, Qi A, Hoekstra WJ, Schotzinger RJ, York JD, Guengerich FP, Lepesheva GI. Structural analyses of Candida albicans sterol 14α-demethylase complexed with azole drugs address the molecular basis of azole-mediated inhibition of fungal sterol biosynthesis. J. Biol. Chem. 2017;292(16):6728-43.
Mahato SB, Kundu AP. 13C NMR spectra of pentacyclic triterpenoids—a compilation and some salient features. Phytochemistry. 1994;37(6):1517-75.
Ketut Adnyana, Yasuhiro Tezuka, Arjun H. Banskota, Quanbo Xiong, Kim Qui Tran, Shigetoshi Kadota. Quadranosides I-V, New Triterpene Glucosides from the Seeds of Combretum quadrangulare. J. Nat. Prod.. 2000;63:496-500.
Kundu AP, Mahato SB. Triterpenoids and their glycosides from Terminalia chebula. Phytochemistry. 1993;32(4):999-1002.
Ichôron N, Tor-Anyiin TA, Igoli JO. Arjunolic Acid from the Root Bark of Terminalia catappa Linn: doi. org/10.26538/tjnpr/v2i11. 6. Trop. J. Nat. Prod. Res.. 2018;2(11):494-7.
Information NCfB. PubChem Compound Summary for CID 155081824. Retrieved March 17, 2023 from https://pubchemncbinlmnihgov/compound/1550818242023.
Lee CF, Chen LX, Chiang CY, Lai CY, Lin HC. The biosynthesis of norsesquiterpene aculenes requires three cytochrome P450 enzymes to catalyze a stepwise demethylation process. Angew. Chem., Int. Ed. Engl.. 2019;58(51):18414-8.
Banskota AH, Tezuka Y, Tran KQ, Tanaka K, Saiki I, Kadota S. Thirteen novel cycloartane-type triterpenes from Combretum quadrangulare. J. Nat. Prod.. 2000;63(1):57-64.
Banskota AH, Tezuka Y, Tran KQ, Tanaka K, Saiki I, Kadota S. Methyl quadrangularates AD and related triterpenes from Combretum quadrangulare. Chem. Pharm. Bull.. 2000;48(4):496-504.
Jian-Feng Xu, Hui-Bin Wu, Ding-Cai Liu, Long Sha, Wen-Hui Wu, Hua Fan, Yi-Shan Song, Zhu HG. Three New 29 Carbon Skeletons Pentacyclic Triterpenoids and S-equol from Biogas Slurry. Bull. Korean Chem. Soc. 2015;36:2862–8.
Higuchi R, Kawasaki T. Pericarp saponins of Akebia quinata Decne. II. Arjunolic and norarjunolic acids, and their glycosides. Chem. Pharm. Bull.. 1976;24(6):1314-23.
Egbubine CO, Adeyemi MM, Habila JD. Isolation and characterization of betulinic acid from the stem bark of Feretia canthioides Hiern and its antimalarial potential. Bull. Natl. Res. Cent. 2020;44(1):1-7.
Sánchez-Burgos J, Ramírez-Mares M, Gallegos-Infante J, González-Laredo R, Moreno-Jiménez M, Cháirez-Ramírez M, Medina-Torres L, Rocha-Guzmán N. Isolation of lupeol from white oak leaves and its anti-inflammatory activity. Ind. Crops Prod. 2015;77:827-32.
Hassan G, Zahra Q, Ali I, Engel N, Ali K, Bahreen G, Ahmad VU, Aziz S, Wang D. Anticancer Activity of Hispidulin from Saussurea simpsoniana and Lupeol from Vincetoxicum arnottianum: doi. org/10.26538/tjnpr/v4i2. 2. Trop. J. Nat. Prod. Res.. 2020;4(2):31-5.
Bisoli E, Garcez WS, Hamerski L, Tieppo C, Garcez FR. Bioactive pentacyclic triterpenes from the stems of Combretum laxum. Molecules. 2008;13(11):2717-28.
Muhammad A, Hassan H, Sani Y, Jimoh A, Bakare L, Sadam A. Isolation and characterization of lupeol and stigmasterol from methanol root extract of Combretum hypopolinum (diels.) Okafor (Combretaceae). J. Med. Pharm. Allied Sci.. 2021;18(4):3547-53.
Facundo VA, Rios KA, Medeiros CM, Militão JS, Miranda ALP, Epifanio RdA, Carvalho MP, Andrade AT, Pinto AC, Rezende CM. Arjunolic acid in the ethanolic extract of Combretum leprosum root and its use as a potential multi-functional phytomedicine and drug for neurodegenerative disorders: anti-inflammatory and anticholinesterasic activities. J. Braz. Chem. Soc.. 2005;16:1309-12.
Ezeokoli OT, Gcilitshana O, Pohl CH. Risk factors for fungal co-infections in critically ill COVID-19 patients, with a focus on immunosuppressants. J. Fungus. 2021;7(7):545.
Ndukwu C, Mbakwem-Aniebo C, Frank-Peterside N. Prevalence of Candida Co-Infections among Patients with Pulmonary Tuberculosis in Emuoha, Rivers State, Nigeria. IOSR J. Pharm. Biol. Sci. 2016;11(5):60-3.
Jin L, Cao Z, Wang Q, Wang Y, Wang X, Chen H, Wang H. MDR1 overexpression combined with ERG11 mutations induce high-level fluconazole resistance in Candida tropicalis clinical isolates. BMC Infect. Dis. 2018;18:1-6.
Dhasarathan P, AlSalhi MS, Devanesan S, Subbiah J, Ranjitsingh A, Binsalah M, Alfuraydi AA. Drug resistance in Candida albicans isolates and related changes in the structural domain of Mdr1 protein. J. Infect. Public Health. 2021;14(12):1848-53.
Flowers SA, Colón B, Whaley SG, Schuler MA, Rogers PD. Contribution of clinically derived mutations in ERG11 to azole resistance in Candida albicans. Antimicrob. Agents Chemother. 2015;59(1):450-60.
Masoko P, Mdee L, Mampuru L, Eloff J. Biological activity of two related triterpenes isolated from Combretum nelsonii (Combretaceae) leaves. Nat. Prod. Res., 2008;22(12):1074-84.
Protti ÍF, Rodrigues DR, Fonseca SK, Alves RJ, de Oliveira RB, Maltarollo VG. Do Drug‐likeness Rules Apply to Oral Prodrugs? ChemMedChem. 2021;16(9):1446-56.