Andrographolides as Antiviral Agents: Insights into Mechanisms, Modifications, and Delivery Innovations http://www.doi.org/10.26538/tjnpr/v7i12.1
Main Article Content
Abstract
Viral infection remains a pressing global health challenge, underscoring the need for novel antiviral interventions. Recently, the potential of andrographolides as potent antiviral agents against major viral infections has garnered substantial attention. This comprehensive review highlights their antiviral activities, focusing on their inhibitory mechanisms and their effects on viral replication. This article also examines their semi-synthetic modifications, novel delivery systems, pharmacokinetic properties, and safety profiles. This review encompasses a wide range of viral infections, including influenza, HIV, HBV, HSV, etc. Key findings revealed the ability of andrographolides to impede viral entry, replication, and release, offering promising avenues for therapeutic intervention. Semi-synthetic modifications enhance antiviral efficacy and broaden the spectrum of action. Innovative delivery systems such as microspheres, liposomes, niosomes, and nanoparticles enhance bioavailability and target-specific delivery. Despite these efforts, research gaps persist, emphasizing the need for clinical validation, optimal dosing, and thorough safety assessment. Interdisciplinary efforts in molecular biology, pharmaceutical innovation, and clinical investigations will shape the future landscape of andrographolides as potent antiviral agents, bolstering global efforts against viral infections.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Hossain S, Urbi Z, Karuniawati H, Mohiuddin RB, Moh Qrimida A, Allzrag AMM, Ming LC, Pagano E, Capasso R. Andrographis paniculata (Burm. f.) Wall. ex Nees: An Updated Review of Phytochemistry, Antimicrobial Pharmacology, and Clinical Safety and Efficacy. Life Basel Switz. 2021;11(4):348.
Enmozhi SK, Raja K, Sebastine I, Joseph J. Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: an in silico approach. J Biomol Struct Dyn. 2021;39(9):3092-3098.
Shao ZJ, Zheng XW, Feng T, Huang J, Chen J, Wu YY, Zhou LM, Tu WW, Li H. Andrographolide exerted its antimicrobial effects by upregulation of human β-defensin-2 induced through p38 MAPK and NF-κB pathway in human lung epithelial cells. Can J Physiol Pharmacol. 2012;90(5):647-653.
Arifullah M, Namsa ND, Mandal M, Chiruvella KK, Vikrama P, Gopal GR. Evaluation of anti-bacterial and anti-oxidant potential of andrographolide and echiodinin isolated from callus culture of Andrographis paniculata Nees. Asian Pac J Trop Biomed. 2013;3(8):604-610; discussion 609-610.
Zaid OI, Abd Majid R, Sabariah MN, Hasidah MS, Al-Zihiry K, Yam MF, Basir R. Andrographolide effect on both Plasmodium falciparum infected and non infected RBCs membranes. Asian Pac J Trop Med. 2015;8(7):507-512.
Jayakumar T, Hsieh CY, Lee JJ, Sheu JR. Experimental and Clinical Pharmacology of Andrographis paniculata and Its Major Bioactive Phytoconstituent Andrographolide. Evid-Based Complement Altern Med ECAM. 2013;9:846740.
Okhuarobo A, Falodun JE, Erharuyi O, Imieje V, Falodun A, Langer P. Harnessing the medicinal properties of Andrographis paniculata for diseases and beyond: a review of its phytochemistry and pharmacology. Asian Pacific J Trop Dis. 2014; 4 (3):213-222.
Gupta S, Mishra KP, Ganju L. Broad-spectrum antiviral properties of andrographolide. Arch Virol. 2017;162(3):611-623.
Ekalaksananan T, Sookmai W, Fangkham S, Pientong C, Aromdee C, Seubsasana S, Kongyingyoes B. Activity of Andrographolide and Its Derivatives on HPV16 Pseudovirus Infection and Viral Oncogene Expression in Cervical Carcinoma Cells. Nutr Cancer. 2015;67(4):687-696.
Adiguna SP, Panggabean JA, Atikana A, Untari F, Izzati F, Bayu A, Rosyidah A, Rahmawati SI, Putra MY. Antiviral Activities of Andrographolide and Its Derivatives: Mechanism of Action and Delivery System. Pharmaceuticals. 2021;14(11):1102.
Zhang H, Li S, Si Y, Xu H. Andrographolide and its derivatives: Current achievements and future perspectives. Eur J Med Chem. 2021;224:113710.
Kumar G, Singh D, Tali JA, Dheer D, Shankar R. Andrographolide: Chemical modification and its effect on biological activities. Bioorganic Chem. 2020;95:103511.
Rafi M, Karomah AH, Heryanto R, Septaningsih DA, Kusuma WA, Amran MB, Rohman A, Prajogo B. Metabolite profiling of Andrographis paniculata leaves and stem extract using UHPLC-Orbitrap-MS/MS. Nat Prod Res. 2022;36(2):625-629.
Bhat M, Murthy H, Murthy H, Murthy H. Isolation of Andrographolide from Andrographis lineata Wall. ex Nees var. lawii C.B. Clarke and its Anticancer Activity against Human Ovarian Teratocarcinoma. Pharmacogn J. 2021;13(3):660-668.
Tundis R, Patra JK, Bonesi M, Das S, Nath R, Das Talukdar A, Das G, Loizzo MR. Anti-Cancer Agent: The Labdane Diterpenoid-Andrographolide. Plants. 2023;12(10):1969.
Herold S, Becker C, Ridge KM, Budinger GRS. Influenza virus-induced lung injury: pathogenesis and implications for treatment. Eur Respir J. 2015;45(5):1463-1478.
Lindsley WG, Noti JD, Blachere FM, Thewlis RE, Martin SB, Othumpangat S, Noorbakhsh B, Goldsmith WT, Vishnu A, Palmer JE, Clark KE, Beezhold DH. Viable influenza A virus in airborne particles from human coughs. J Occup Environ Hyg. 2015;12(2):107-113.
Jiang M, Sheng F, Zhang Z, Ma X, Gao T, Fu C, Li P. Andrographis paniculata (Burm.f.) Nees and its major constituent andrographolide as potential antiviral agents. J Ethnopharmacol. 2021;272:113954.
Seniya C, Shrivastava S, Singh SK, Khan GJ. Analyzing the interaction of a herbal compound Andrographolide from Andrographis paniculata as a folklore against swine flu (H1N1). Asian Pac J Trop Dis. 2014;4:S624-S630.
Cai W, Li Y, Chen S, Wang M, Zhang A, Zhou H, Chen H, Jin M. 14-Deoxy-11,12-dehydroandrographolide exerts anti-influenza A virus activity and inhibits replication of H5N1 virus by restraining nuclear export of viral ribonucleoprotein complexes. Antiviral Res. 2015;118:82-92.
Ding Y, Chen L, Wu W, Yang J, Yang Z, Liu S. Andrographolide inhibits influenza A virus-induced inflammation in a murine model through NF-κB and JAK-STAT signaling pathway. Microbes Infect. 2017;19(12):605-615.
Yu B, Dai C qi, Jiang Z you, Li E qing, Chen C, Wu X lin, Chen J, Liu Q, Zhao C lin, He J xiong, Ju D hong, Chen X yin. Andrographolide as an anti-H1N1 drug and the mechanism related to retinoic acid-inducible gene-I-like receptors signaling pathway. Chin J Integr Med. 2014;20(7):540-545.
Kamp C. Understanding the HIV coreceptor switch from a dynamical perspective. BMC Evol Biol. 2009;9(1):274.
Feng L, Wang L, Ma Y yun, Li M, Zhao GQ. A Potential In Vitro and In Vivo anti-HIV Drug Screening System for Chinese Herbal Medicines. Phytother Res. 2012;26(6):899-907.
Uttekar MM, Das T, Pawar RS, Bhandari B, Menon V, Nutan, Gupta SK, Bhat SV. Anti-HIV activity of semisynthetic derivatives of andrographolide and computational study of HIV-1 gp120 protein binding. Eur J Med Chem. 2012;56:368-374. doi:10.1016/j.ejmech.2012.07.030
Reddy VLN, Reddy SM, Ravikanth V, Krishnaiah P, Goud TV, Rao TP, Ram TS, Gonnade RG, Bhadbhade M, Venkateswarlu Y. A new bis-andrographolide ether from Andrographis paniculata nees and evaluation of anti-HIV activity. Nat Prod Res. 2005;19(3):223-230.
Jiang YC, Feng H, Lin YC, Guo XR. New strategies against drug resistance to herpes simplex virus. Int J Oral Sci. 2016;8(1):1-6.
Wiart C, Kumar K, Yusof MY, Hamimah H, Fauzi ZM, Sulaiman M. Antiviral properties of ent-labdene diterpenes of Andrographis paniculata nees, inhibitors of herpes simplex virus type 1. Phytother Res. 2005;19(12):1069-1070.
Priengprom T, Ekalaksananan T, Kongyingyoes B, Suebsasana S, Aromdee C, Pientong C. Synergistic effects of acyclovir and 3, 19- isopropylideneandrographolide on herpes simplex virus wild types and drug-resistant strains. BMC Complement Altern Med. 2015;15(1):56.
Sa-ngiamsuntorn K, Suksatu A, Pewkliang Y, Thongsri P, Kanjanasirirat P, Manopwisedjaroen S, Charoensutthivarakul S, Wongtrakoongate P, Pitiporn S, Chaopreecha J, Kongsomros S, Jearawuttanakul K, Wannalo W, Khemawoot P, Chutipongtanate S, Borwornpinyo S, Thitithanyanont A, Hongeng S. Anti-SARS-CoV-2 Activity of Andrographis paniculata Extract and Its Major Component Andrographolide in Human Lung Epithelial Cells and Cytotoxicity Evaluation in Major Organ Cell Representatives. J Nat Prod. 2021;84(4):1261-1270.
Kumar S, Maurya VK, Prasad AK, Bhatt MLB, Saxena SK. Structural, glycosylation and antigenic variation between 2019 novel coronavirus (2019-nCoV) and SARS coronavirus (SARS-CoV). VirusDisease. 2020;31(1):13-21.
Maurya VK, Kumar S, Prasad AK, Bhatt MLB, Saxena SK. Structure-based drug designing for potential antiviral activity of selected natural products from Ayurveda against SARS-CoV-2 spike glycoprotein and its cellular receptor. VirusDisease. 2020;31(2):179-193.
Rajagopal K, Varakumar P, Baliwada A, Byran G. Activity of phytochemical constituents of Curcuma longa (turmeric) and Andrographis paniculata against coronavirus (COVID-19): an in silico approach. Future J Pharm Sci. 2020;6(1):104.
Murugan NA, Pandian CJ, Jeyakanthan J. Computational investigation on Andrographis paniculata phytochemicals to evaluate their potency against SARS-CoV-2 in comparison to known antiviral compounds in drug trials. J Biomol Struct Dyn. 2021;39(12):4415-4426.
Shi TH, Huang YL, Chen CC, Pi WC, Hsu YL, Lo LC, Chen WY, Fu SL, Lin CH. Andrographolide and its fluorescent derivative inhibit the main proteases of 2019-nCoV and SARS-CoV through covalent linkage. Biochem Biophys Res Commun. 2020;533(3):467-473.
Halstead SB. Dengue Virus–Mosquito Interactions. Annu Rev Entomol. 2008;53(1):273-291. doi:10.1146/annurev.ento.53.103106.093326
Tantawichien T. Dengue fever and dengue haemorrhagic fever in adolescents and adults. Paediatr Int Child Health. 2012;32(s1):22-27.
Paemanee A, Hitakarun A, Wintachai P, Roytrakul S, Smith DR. A proteomic analysis of the anti-dengue virus activity of andrographolide. Biomed Pharmacother. 2019;109:322-332.
Panraksa P, Ramphan S, Khongwichit S, Smith DR. Activity of andrographolide against dengue virus. Antiviral Res. 2017;139:69-78.
Tseng CK, Lin CK, Wu YH, Chen YH, Chen WC, Young KC, Lee JC. Human heme oxygenase 1 is a potential host cell factor against dengue virus replication. Sci Rep. 2016;6:32176.
Kaushik S, Dar L, Kaushik S, Yadav JP. Identification and characterization of new potent inhibitors of dengue virus NS5 proteinase from Andrographis paniculata supercritical extracts on in animal cell culture and in silico approaches. J Ethnopharmacol. 2021;267:113541.
Tang LI, Ling AP, Koh RY, Chye SM, Voon KG. Screening of anti-dengue activity in methanolic extracts of medicinal plants. BMC Complement Altern Med. 2012;12(1):3.
Wintachai P, Kaur P, Lee RCH, Ramphan S, Kuadkitkan A, Wikan N, Ubol S, Roytrakul S, Chu JJH, Smith DR. Activity of andrographolide against chikungunya virus infection. Sci Rep. 2015;5:14179.
Oliveira DM de, Santos I de A, Martins DOS, Gonçalves YG, Cardoso-Sousa L, Sabino-Silva R, Von Poelhsitz G, Franca E de F, Nicolau-Junior N, Pacca CC, Merits A, Harris M, Jardim ACG. Organometallic Complex Strongly Impairs Chikungunya Virus Entry to the Host Cells. Front Microbiol. 2020;11. Accessed August 21, 2023. https://www.frontiersin.org/articles/10.3389/fmicb.2020.608924
Judith D, Mostowy S, Bourai M, Gangneux N, Lelek M, Lucas-Hourani M, Cayet N, Jacob Y, Prévost MC, Pierre P, Tangy F, Zimmer C, Vidalain PO, Couderc T, Lecuit M. Species-specific impact of the autophagy machinery on Chikungunya virus infection. EMBO Rep. 2013;14(6):534-544.
Li F, Khanom W, Sun X, Paemanee A, Roytrakul S, Wang D, Smith DR, Zhou GC. Andrographolide and Its 14-Aryloxy Analogues Inhibit Zika and Dengue Virus Infection. Mol Basel Switz. 2020;25(21):5037.
Lu H, Zhang XY, Wang YQ, Zheng XL, Yin-Zhao null, Xing WM, Zhang Q. Andrographolide sodium bisulfate-induced apoptosis and autophagy in human proximal tubular endothelial cells is a ROS-mediated pathway. Environ Toxicol Pharmacol. 2014;37(2):718-728.
Xing WM, Yuan TJ, Xu JD, Gu LL, Liang P, Lu H. Proteomic identification of mitochondrial targets involved in andrographolide sodium bisulfite-induced nephrotoxicity in a rat model. Environ Toxicol Pharmacol. 2015;40(2):592-599.
Wang J, Tan XF, Nguyen VS, Yang P, Zhou J, Gao M, Li Z, Lim TK, He Y, Ong CS, Lay Y, Zhang J, Zhu G, Lai SL, Ghosh D, Mok YK, Shen HM, Lin Q. A quantitative chemical proteomics approach to profile the specific cellular targets of andrographolide, a promising anticancer agent that suppresses tumor metastasis. Mol Cell Proteomics MCP. 2014;13(3):876-886.
Hong M, Sandalova E, Low D, Gehring AJ, Fieni S, Amadei B, Urbani S, Chong YS, Guccione E, Bertoletti A. Trained immunity in newborn infants of HBV-infected mothers. Nat Commun. 2015;6(1):6588.
Sa-Nguanmoo P, Rianthavorn P, Amornsawadwattana S, Poovorawan Y. Hepatitis B virus infection in non-human primates. Acta Virol. 2009;53(2):73-82.
Stoop JN, van der Molen RG, Baan CC, van der Laan LJW, Kuipers EJ, Kusters JG, Janssen HLA. Regulatory T cells contribute to the impaired immune response in patients with chronic hepatitis B virus infection. Hepatol Baltim Md. 2005;41(4):771-778.
Busca A, Kumar A. Innate immune responses in hepatitis B virus (HBV) infection. Virol J. 2014;11(1):22.
Chen Y, Zhu J. Anti-HBV effect of individual traditional Chinese herbal medicine in vitro and in vivo: an analytic review. J Viral Hepat. 2013;20(7):445-452.
Kim KH, Kim ND, Seong BL. Discovery and Development of Anti-HBV Agents and Their Resistance. Molecules. 2010;15(9):5878-5908.
Chen H, Ma YB, Huang XY, Geng CA, Zhao Y, Wang LJ, Guo RH, Liang WJ, Zhang XM, Chen JJ. Synthesis, structure-activity relationships and biological evaluation of dehydroandrographolide and andrographolide derivatives as novel anti-hepatitis B virus agents. Bioorg Med Chem Lett. 2014;24(10):2353-2359.
Ito M, Kusunoki H, Mizuochi T. Peripheral B Cells as Reservoirs for Persistent HCV Infection. Front Microbiol. 2011;2:177.
Yi G, Wen Y, Shu C, Han Q, Konan KV, Li P, Kao CC. Hepatitis C Virus NS4B Can Suppress STING Accumulation To Evade Innate Immune Responses. J Virol. 2016;90(1):254-265.
Freeman AJ, Marinos G, Ffrench RA, Lloyd AR. Immunopathogenesis of hepatitis C virus infection. Immunol Cell Biol. 2001;79(6):515-536.
Yu Y, Jing J feng, Tong X kun, He P lan, Li Y chao, Hu Y hong, Tang W, Zuo J ping. Discovering novel anti-HCV compounds with inhibitory activities toward HCV NS3/4A protease. Acta Pharmacol Sin. 2014;35(8):1074-1081.
Lee JC, Tseng CK, Young KC, Sun HY, Wang SW, Chen WC, Lin CK, Wu YH. Andrographolide exerts anti-hepatitis C virus activity by up-regulating haeme oxygenase-1 via the p38 MAPK/Nrf2 pathway in human hepatoma cells. Br J Pharmacol. 2014;171(1):237-252.
Chandramohan V, Kaphle A, Chekuri M, Gangarudraiah S, Bychapur Siddaiah G. Evaluating Andrographolide as a Potent Inhibitor of NS3-4A Protease and Its Drug-Resistant Mutants Using In Silico Approaches. Adv Virol. 2015;2015:972067.
Tsang CM, Deng W, Yip YL, Zeng MS, Lo KW, Tsao SW. Epstein-Barr virus infection and persistence in nasopharyngeal epithelial cells. Chin J Cancer. 2014;33(11):549-555.
Ni C, Chen Y, Zeng M, Pei R, Du Y, Tang L, Wang M, Hu Y, Zhu H, He M, Wei X, Wang S, Ning X, Wang M, Wang J, Ma L, Chen X, Sun Q, Tang H, Wang Y, Wang X. In-cell infection: a novel pathway for Epstein-Barr virus infection mediated by cell-in-cell structures. Cell Res. 2015;25(7):785-800.
Rancan C, Schirrmann L, Hüls C, Zeidler R, Moosmann A. Latent Membrane Protein LMP2A Impairs Recognition of EBV-Infected Cells by CD8+ T Cells. PLOS Pathog. 2015;11(6):e1004906.
Wang JJ, Li YF, Jin YY, Wang X, Chen TX. Effects of Epstein-Barr virus on the development of dendritic cells derived from cord blood monocytes: an essential role for apoptosis. Braz J Infect Dis Off Publ Braz Soc Infect Dis. 2012;16(1):19-26.
Malat P, Ekalaksananan T, Heawchaiyaphum C, Suebsasana S, Roytrakul S, Yingchutrakul Y, Pientong C. Andrographolide Inhibits Lytic Reactivation of Epstein-Barr Virus by Modulating Transcription Factors in Gastric Cancer. Microorganisms. 2021;9(12):2561.
Song D, Li H, Li H, Dai J. Effect of human papillomavirus infection on the immune system and its role in the course of cervical cancer. Oncol Lett. 2015;10(2):600-606.
Wierzbicka M, San Giorgi MRM, Dikkers FG. Transmission and clearance of human papillomavirus infection in the oral cavity and its role in oropharyngeal carcinoma – A review. Rev Med Virol. 2023;33(1):e2337.
Orosco FL. Recent advances in peptide-based nanovaccines for re-emerging and emerging infectious diseases. J Adv Biotechnol Exp Ther. 2024;7(1):106-117.
Mishra A, Shaik HA, Sinha RK, Shah BR. Andrographolide: A Herbal-Chemosynthetic Approach for Enhancing Immunity, Combating Viral Infections, and Its Implication on Human Health. Molecules. 2021;26(22):7036.
Khanal P, Dey YN, Patil R, Chikhale R, Wanjari MM, Gurav SS, Patil BM, Srivastava B, Gaidhani SN. Combination of system biology to probe the anti-viral activity of andrographolide and its derivative against COVID-19. RSC Adv. 2021;11(9):5065-5079.
Aromdee C. Modifications of andrographolide to increase some biological activities: a patent review (2006 – 2011). Expert Opin Ther Pat. 2012;22(2):169-180.
Aromdee C, Suebsasana S, Ekalaksananan T, Pientong C, Thongchai S. Stage of action of naturally occurring andrographolides and their semisynthetic analogues against herpes simplex virus type 1 in vitro. Planta Med. 2011;77(9):915-921.
Yuan L, Zhang C, Sun H, Liu Q, Huang J, Sheng L, Lin B, Wang J, Chen L. The semi-synthesis of novel andrographolide analogues and anti-influenza virus activity evaluation of their derivatives. Bioorg Med Chem Lett. 2016;26(3):769-773.
Chen JX, Xue HJ, Ye WC, Fang BH, Liu YH, Yuan SH, Yu P, Wang YQ. Activity of Andrographolide and Its Derivatives against Influenza Virus in Vivo and in Vitro. Biol Pharm Bull. 2009;32(8):1385-1391.
Wang D, Guo H, Chang J, Wang D, Liu B, Gao P, Wei W. Andrographolide Prevents EV-D68 Replication by Inhibiting the Acidification of Virus-Containing Endocytic Vesicles. Front Microbiol. 2018;9. Accessed August 21, 2023. https://www.frontiersin.org/articles/10.3389/fmicb.2018.02407
Cai W, Wen H, Zhou Q, Wu L, Chen Y, Zhou H, Jin M. 14-Deoxy-11,12-didehydroandrographolide inhibits apoptosis in influenza A(H5N1) virus-infected human lung epithelial cells via the caspase-9-dependent intrinsic apoptotic pathway which contributes to its antiviral activity. Antiviral Res. 2020;181:104885.
Dasgupta Mandal D, Mandal T, Hazra M. Strategic approach in hepatic delivery of andrographolide: Key challenges and new insights. J Herb Med. 2020;24:100411.
Su C, Liu Y, Li R, Wu W, Fawcett JP, Gu J. Absorption, distribution, metabolism and excretion of the biomaterials used in Nanocarrier drug delivery systems. Adv Drug Deliv Rev. 2019;143:97-114.
Toyama T, Nitta N, Ohta S, Tanaka T, Nagatani Y, Takahashi M, Murata K, Shiomi H, Naka S, Kurumi Y, Tani T, Tabata Y. Clinical trial of cisplatin-conjugated gelatin microspheres for patients with hepatocellular carcinoma. Jpn J Radiol. 2012;30(1):62-68.
Jiang Y, Wang F, Xu H, Liu H, Meng Q, Liu W. Development of andrographolide loaded PLGA microspheres: optimization, characterization and in vitro-in vivo correlation. Int J Pharm. 2014;475(1-2):475-484.
Staff RH, Landfester K, Crespy D. Recent Advances in the Emulsion Solvent Evaporation Technique for the Preparation of Nanoparticles and Nanocapsules. In: Percec V, ed. Hierarchical Macromolecular Structures: 60 Years after the Staudinger Nobel Prize II. Advances in Polymer Science. Springer International Publishing; 2013:329-344.
Gibaud S, Attivi D. Microemulsions for oral administration and their therapeutic applications. Expert Opin Drug Deliv. 2012;9(8):937-951.
Spernath A, Aserin A. Microemulsions as carriers for drugs and nutraceuticals. Adv Colloid Interface Sci. 2006;128-130:47-64.
Du H, Yang X, Li H, Han L, Li X, Dong X, Zhu Q, Ye M, Feng Q, Niu X. Preparation and evaluation of andrographolide-loaded microemulsion. J Microencapsul. 2012;29(7):657-665.
Sermkaew N, Ketjinda W, Boonme P, Phadoongsombut N, Wiwattanapatapee R. Liquid and solid self-microemulsifying drug delivery systems for improving the oral bioavailability of andrographolide from a crude extract of Andrographis paniculata. Eur J Pharm Sci Off J Eur Fed Pharm Sci. 2013;50(3-4):459-466.
Syukri Y, Martien R, Lukitaningsih E, Nugroho AE. Novel Self-Nano Emulsifying Drug Delivery System (SNEDDS) of andrographolide isolated from Andrographis paniculata Nees: Characterization, in-vitro and in-vivo assessment. J Drug Deliv Sci Technol. 2018;47:514-520.
Jayanta Sinha SM Nirmalendu Das, Mukul Kumar Basu. Targeting of Liposomal Andrographolide to L. donovani -Infected Macrophages in Vivo. Drug Deliv. 2000;7(4):209-213.
Kang X, Zheng Z, Liu Z, Wang H, Zhao Y, Zhang W, Shi M, He Y, Cao Y, Xu Q, Peng C, Huang Y. Liposomal Codelivery of Doxorubicin and Andrographolide Inhibits Breast Cancer Growth and Metastasis. Mol Pharm. 2018;15(4):1618-1626.
Li M, Zhang T, Zhu L, Wang R, Jin Y. Liposomal andrographolide dry powder inhalers for treatment of bacterial pneumonia via anti-inflammatory pathway. Int J Pharm. 2017;528(1):163-171.
Moghassemi S, Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: an illustrated review. J Control Release Off J Control Release Soc. 2014;185:22-36.
Tu YS, Sun DM, Zhang JJ, Jiang ZQ, Chen YX, Zeng XH, Huang DE, Yao N. Preparation and characterisation of andrographolide niosomes and its anti-hepatocellular carcinoma activity. J Microencapsul. 2014;31(4):307-316.
Maitani Y, Soeda H, Junping W, Takayama K. Modified ethanol injection method for liposomes containing β-sitosterol β-d-glucoside. J Liposome Res. 2001;11(1):115-125.
Parveen R, Ahmad FJ, Iqbal Z, Samim M, Ahmad S. Solid lipid nanoparticles of anticancer drug andrographolide: formulation, in vitro and in vivo studies. Drug Dev Ind Pharm. 2014;40(9):1206-1212.
Graverini G, Piazzini V, Landucci E, Pantano D, Nardiello P, Casamenti F, Pellegrini-Giampietro DE, Bilia AR, Bergonzi MC. Solid lipid nanoparticles for delivery of andrographolide across the blood-brain barrier: in vitro and in vivo evaluation. Colloids Surf B Biointerfaces. 2018;161:302-313.
Kulsirirat T, Sathirakul K, Kamei N, Takeda-Morishita M. The in vitro and in vivo study of novel formulation of andrographolide PLGA nanoparticle embedded into gelatin-based hydrogel to prolong delivery and extend residence time in joint. Int J Pharm. 2021;602:120618.
Yang T, Sheng HH, Feng NP, Wei H, Wang ZT, Wang CH. Preparation of Andrographolide-Loaded Solid Lipid Nanoparticles and Their In Vitro and In Vivo Evaluations: Characteristics, Release, Absorption, Transports, Pharmacokinetics, and Antihyperlipidemic Activity. J Pharm Sci. 2013;102(12):4414-4425.
Orosco FL. Current progress in diagnostics, therapeutics, and vaccines for African swine fever virus: https://doi.org/10.12982/VIS.2023.054. Vet Integr Sci. 2023;21(3):751-781.
Wang Z, He R, Chen Y, Wu F. Regio-selective PEGylation of 14-deoxy-11,12-didehydroandrographolide and their biological evaluation. Tetrahedron. 2016;72(39):5909-5913.
Bera R, Ahmed SKM, Sarkar L, Sen T, Karmakar S. Pharmacokinetic analysis and tissue distribution of andrographolide in rat by a validated LC-MS/MS method. Pharm Biol. 2014;52(3):321-329.
Balap A, Lohidasan S, Sinnathambi A, Mahadik K. Pharmacokinetic and Pharmacodynamic Interaction of Andrographolide and Standardized Extract of Andrographis paniculata (Nees) with Nabumetone in Wistar Rats. Phytother Res PTR. 2017;31(1):75-80.
Ye L, Wang T, Tang L, Liu W, Yang Z, Zhou J, Zheng Z, Cai Z, Hu M, Liu Z. Poor oral bioavailability of a promising anticancer agent andrographolide is due to extensive metabolism and efflux by P-glycoprotein. J Pharm Sci. 2011;100(11):5007-5017.
Balap A, Lohidasan S, Sinnathambi A, Mahadik K. Herb-drug interaction of Andrographis paniculata (Nees) extract and andrographolide on pharmacokinetic and pharmacodynamic of naproxen in rats. J Ethnopharmacol. 2017;195:214-221.
Zhang SQ, Wang X, Zhang Y, Li X. Pharmacokinetics of Andrographolide Sodium Bisulphite and its Related Substance in Rats by Liquid Chromatography–Tandem Mass Spectrometry. J Anal Chem. 2020;75(8):1033-1037.
Zhang SQ, Fan YM. Determination of andrograpolide sodium bisulphite in Beagle dog plasma by LC–MS/MS and its application to pharmacokinetics. J Chromatogr B. 2012;907:173-177.
Godugu D, Rupula K, Sashidhar RB. Binding Studies of Andrographolide with Human Serum Albumin: Molecular Docking, Chromatographic and Spectroscopic Studies. Protein Pept Lett. 25(4):330-338.
Zhao HY, Hu H, Wang YT. Comparative metabolism and stability of andrographolide in liver microsomes from humans, dogs and rats using ultra-performance liquid chromatography coupled with triple-quadrupole and Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun Mass Spectrom. 2013;27(12):1385-1392.
Yu Z, Chen Z, Li Q, Yang K, Huang Z, Wang W, Zhao S, Hu H. What dominates the changeable pharmacokinetics of natural sesquiterpene lactones and diterpene lactones: a review focusing on absorption and metabolism. Drug Metab Rev. 2021;53(1):122-140.
Panossian A, Hovhannisyan A, Mamikonyan G, Abrahamian H, Hambardzumyan E, Gabrielian E, Goukasova G, Wikman G, Wagner H. Pharmacokinetic and oral bioavailability of andrographolide from Andrographis paniculata fixed combination Kan Jang in rats and human. Phytomedicine. 2000;7(5):351-364.
Qiu F, Cui L, Chen L, Sun J, Yao X. Two novel creatinine adducts of andrographolide in human urine. Xenobiotica Fate Foreign Compd Biol Syst. 2012;42(9):911-916.
Mahedi MRA, Rawat A, Rabbi F, Babu KS, Tasayco ES, Areche FO, Pacovilca-Alejo OV, Flores DDC, Aguilar SV, Orosco FL, Syrmos N, Mudhafar M, Afrin S, Rahman MM. Understanding the Global Transmission and Demographic Distribution of Nipah Virus (NiV). Res J Pharm Technol. 2023;16(8):3588-3594.
Zhang X, Zhang X, Wang X, Zhao M. Influence of andrographolide on the pharmacokinetics of warfarin in rats. Pharm Biol. 2018;56(1):351-356.
Suriyo T, Chotirat S, Rangkadilok N, Pholphana N, Satayavivad J. Interactive effects of Andrographis paniculata extracts and cancer chemotherapeutic 5-Fluorouracil on cytochrome P450s expression in human hepatocellular carcinoma HepG2 cells. J Herb Med. 2021;26:100421.
Pholphana N, Panomvana D, Rangkadilok N, Suriyo T, Puranajoti P, Ungtrakul T, Pongpun W, Thaeopattha S, Songvut P, Satayavivad J. Andrographis paniculata: Dissolution investigation and pharmacokinetic studies of four major active diterpenoids after multiple oral dose administration in healthy Thai volunteers. J Ethnopharmacol. 2016;194:513-521.
Gu LL, Zhang XY, Xing WM, Xu JD, Lu H. Andrographolide-induced apoptosis in human renal tubular epithelial cells: Roles of endoplasmic reticulum stress and inflammatory response. Environ Toxicol Pharmacol. 2016;45:257-264.
Orosco FL. Immune evasion mechanisms of porcine epidemic diarrhea virus: A comprehensive review: https://doi.org/10.12982/VIS.2024.014. Vet Integr Sci. 2024;22(1):171-192.
Liang H xing, Lu S sheng, Yan Z, Kuang Y ping, Zhu X xing, Yan Z guang, Du T, Chai W ran, Long H, Lyu Q feng, Liang H xing, Lu S sheng, Yan Z, Kuang Y ping, Zhu X xing, Yan Z guang, Du T, Chai W ran, Long H, Lyu Q feng. Andrographolide disrupts meiotic maturation by blocking cytoskeletal reorganisation and decreases the fertilisation potential of mouse oocytes. Reprod Fertil Dev. 2017;29(12):2336-2344.
Ciampi E, Uribe-San-Martin R, Cárcamo C, Cruz JP, Reyes A, Reyes D, Pinto C, Vásquez M, Burgos RA, Hancke J. Efficacy of andrographolide in not active progressive multiple sclerosis: a prospective exploratory double-blind, parallel-group, randomized, placebo-controlled trial. BMC Neurol. 2020;20(1):173.
Calabrese C, Berman SH, Babish JG, Ma X, Shinto L, Dorr M, Wells K, Wenner CA, Standish LJ. A phase I trial of andrographolide in HIV positive patients and normal volunteers. Phytother Res. 2000;14(5):333-338.
Chandrama Singh S, Choudhary M, Mourya A, Khatri DK, Singh PK, Madan J, Singh H. Acute and Subacute Toxicity Assessment of Andrographolide-2-hydroxypropyl-β-cyclodextrin Complex via Oral and Inhalation Route of Administration in Sprague-Dawley Rats. Sci World J. 2022;2022:e6224107.
Orosco F. Advancing the frontiers: Revolutionary control and prevention paradigms against Nipah virus. Open Veterinary Journal. 2023;13(9):1056–1056.
Sato H, Hiraki M, Namba T, Egawa N, Baba K, Tanaka T, Noshiro H. Andrographolide induces degradation of mutant p53 via activation of Hsp70. Int J Oncol. 2018;53(2):761-770.