Ursolic Acid-Loaded Chitosan Nanoparticles Modulate the Expression Pattern of Apoptotic Markers Towards Oral Tumour Inhibition in Golden Syrian Hamsters

http://www.doi.org/10.26538/tjnpr/v7i11.33

Authors

  • Mohan Karthik Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar- 608002, Tamilnadu, India.
  • Ellapan Paari Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar- 608002, Tamilnadu, India.
  • Shanmugam M Sivasankaran Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar- 608002, Tamilnadu, India.
  • Chakaravarthy Elanchezhiyan Department of Zoology, Annamalai University, Annamalainagar-608002, Tamilnadu, India
  • Shanmugam Manoharan Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar- 608002, Tamilnadu, India.

Keywords:

Apoptosis, Ursolic acid loaded-chitosan nanoparticles, DMBA, Oral cancer

Abstract

Apoptosis, a systematic and harmonized sequential process, eliminates cells that contain potentially dangerous mutations. Cancer cells evade apoptosis by interfering with the functions of pro-apoptotic and anti-apoptotic proteins. The efficiency of ursolic acid-loaded chitosan nanoparticles (UACNP) in modulating pro-apoptotic and anti-apoptotic markers’ expression towards tumor inhibition was assessed using immunohistochemistry in 7,12- dimethylbenz(a)anthracene (DMBA)-induced oral carcinoma in golden Syrian hamsters. An oral tumor was developed in the buccal pouch of hamsters by painting with DMBA, three times per
week for 14 weeks. While buccal mucosa mutant p53 and Bcl-2 proteins were overexpressed, Bax, Bid, Bad, caspase-3 and 9 were downregulated in tumor-bearing hamsters. UACNP administration (12.5 mg/Kg b.w) to hamsters, on alternative days to DMBA exposure reverted the immunoexpression pattern of apoptotic markers towards the inhibition of tumor formation. The present investigation also observed that UACNP can improve apoptotic marker expression in the chemotherapeutic phase (DMBA → UACNP) as evidenced by the reduction in the number of tumors as well as tumor size. The observed findings thus highlight the apoptotic efficiency of UACNP, which could probably be attributed to its tumor-preventing efficacy in DMBA-induced oral carcinogenesis. 

References

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020:GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-249.

Dhanuthai K, Rojanawatsirivej S, Thosaporn W, Kintarak S, Subarnbhesaj A, Darling M, Kryshtalskyj E, Chiang CP, Shin HI, Choi SY, Lee SS, Aminishakib P. Oral cancer: A multicenter study. Med Oral Patol Oral Cir Bucal. 2018;23(1):e23-e29.

Li H, Zhang Y, Xu M, Yang D. Current trends of targeted therapy for oral squamous cell carcinoma. J Cancer Res Clin Oncol. 2022;148(9):2169-2186.

Kashyap D, Garg VK, Goel N. Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis. Adv Protein Chem Struct Biol. 2021;125:73-120.

Polverini PJ, Nör JE. Apoptosis and predisposition to oral cancer. Crit Rev Oral Biol Med. 1999;10(2):139-152.

Silva FFVE, Padín-Iruegas ME, Caponio VCA, LorenzoPouso AI, Saavedra-Nieves P, Chamorro-Petronacci CM, Suaréz-Peñaranda J, Pérez-Sayáns M. Caspase 3 and Cleaved Caspase 3 Expression in Tumorogenesis and Its Correlations with Prognosis in Head and Neck Cancer: A Systematic Review and Meta-Analysis. Int J Mol Sci. 2022;23(19):11937.

Häcker G. The morphology of apoptosis. Cell Tissue Res. 2000;301(1):5-17.

Buddhan R, Manoharan S Elanchezhiyan C, Muralinaidu R, Karthik M. Myrtenal modulates the immunoexpression of cell proliferative, angiogenic and invasive markers in dmba-induced hamster oral carcinogenesis. Trop J. Pharm Res. (2020): 550-557.

Manimaran A, Manoharan, S. Tumor Preventive Efficacy of Emodin in 7,12-Dimethylbenz[a]Anthracene-Induced Oral Carcinogenesis: a Histopathological and Biochemical Approach. Pathol Oncol Res. 2018 24(1), 19–29.

Naseer I, Elanchezhiyan C, Manoharan S, Hassan T, Neelakandan M. Vanillin Modulates the Status of Glycoconjugates in Favouur of Tumor Suppression in 7, 12dimethylbenz [a] anthracene Induced Oral Carcinoma in Golden Syrian Hamster. Trop J. Pharm Res. 2021. 5(4),

-620.

Mlala S, Oyedeji AO, Gondwe M, Oyedeji OO. Ursolic Acid and Its Derivatives as Bioactive Agents. Molecules. 2019;24(15):2751.

Kornel A, Nadile M, Retsidou MI, Sakellakis M, Gioti K, Beloukas A, Sze NSK, Klentrou P, Tsiani E. Ursolic Acid against Prostate and Urogenital Cancers: A Review of in vitro and in vivo Studies. Int J Mol Sci. 2023;24(8):7414.

Sandhu SS, Rouz SK, Kumar S, Swamy N, Deshmukh L, Hussain A, Haque S, Tuli HS. Ursolic acid: a pentacyclic triterpenoid that exhibits anticancer therapeutic potential by modulating multiple oncogenic targets [published online ahead of print, 2023 Jan 4]. Biotechnol Genet Eng Rev. 2023;1-31.

Karthik M, Manoharan S, Muralinaidu R. Ursolic acidloaded chitosan nanoparticles suppress 7,12- dimethylbenz(a)anthracene-induced oral tumor formation through their antilipidperoxidative potential in golden Syrian hamsters [published online ahead of print, 2023 May

. Naunyn Schmiedebergs Arch Pharmacol. 2023;10.1007/s00210-023-02509-2.

Calvo P, Remuñan-López C, Vila-Jato JL, Alonso MJ. Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res. 1997; 14(10):1431-6. doi: 10.1023/a:1012128907225

He S, Chakraborty R, Ranganathan S. Proliferation and Apoptosis Pathways and Factors in Oral Squamous Cell Carcinoma. Int J Mol Sci. 2022;23(3):1562.

Daneste H, Sadeghzadeh A, Mokhtari M, Mohammadkhani H, Lavaee F, Moayedi J. Immunoexpression of p53 mutanttype in Iranian patients with primary and recurrence oral squamous cell carcinoma. Eur J Transl Myol. 2022;33(1):10.4081/ejtm.2022.10847.

Hu J, Cao J, Topatana W, Juengpanich S, Li S, Zhang B, Shen J, Cai L, Cai X, Chen M. Targeting mutant p53 for cancer therapy: direct and indirect strategies. J Hematol Oncol. 2021;14(1):157.

Kamat MS, Puranik RS, Das Rai AB, Patil BR, Patil S. Correction to: Assessing immuno-expression of p53 protein and TP 53 gene amplification in histologically negative surgical margins of oral squamous cell carcinoma patients and normal oral mucosa. Clin Oral Investig. 2023;27(1):431. Erratum for: Clin Oral Investig. 2022;26(10):6235-6243.

Novack R, Zhang L, Hoang LN, Kadhim M, Ng TL, Poh CF, Kevin Ko YC. Abnormal p53 Immunohistochemical Patterns Shed Light on the Aggressiveness of Oral Epithelial Dysplasia. Mod Pathol. 2023;36(7):100153.

Sinevici N, O'sullivan J. Oral cancer: Deregulated molecular events and their use as biomarkers. Oral Oncol. 2016;61:12-18.

Patel KR, Vajaria BN, Singh RD, Begum R, Patel PS. Clinical implications of p53 alterations in oral cancer progression: a review from India. Exp Oncol. 2018;40(1):10-18.

Vinothkumar, V., Manoharan, S., Sindhu, G., Nirmal, M. R., &Vetrichelvi, V. Geraniol modulates cell proliferation, apoptosis, inflammation, and angiogenesis during 7,12- dimethylbenz[a]anthracene-induced hamster buccal pouch carcinogenesis. Mol Cell Biochem. 2012; 369(1-2): 17–25.

Manoharan S, Palanimuthu D, Baskaran N, Silvan S. Modulating effect of lupeol on the expression pattern of apoptotic markers in 7, 12-dimethylbenz(a)anthracene induced oral carcinogenesis. Asian Pac J Cancer Prev. 2012;13(11):5753-5757.

Manoharan S, Rajasekaran D, Prabhakar MM, Karthikeyan S, Manimaran A. Modulating Effect of Enicostemmalittorale on the Expression Pattern of Apoptotic, Cell Proliferative, Inflammatory and Angiogenic Markers During 7, 12-Dimethylbenz (a) Anthracene

Induced Hamster Buccal Pouch Carcinogenesis. Toxicol Int. 2015;22(1):130-140.

Bhutani N, Poswal P, Moga S, Arora S. Immunohistochemical expression of bcl-2; an apoptosis regulatory protein in squamous cell carcinoma of oropharynx: A diagnostic cross-sectional study. Ann Med Surg (Lond). 2021;67:102480.

Dwivedi R, Chandra S, Mehrotra D, Raj V, Pandey R. Predicting transition from oral pre-malignancy to malignancy via Bcl-2 immuno-expression: Evidence and lacunae. J Oral BiolCraniofac Res. 2020;10(4):397-403.

Popović B, Jekić B, Novaković I, Luković LJ, Tepavcević Z, Jurisić V, Vukadinović M, Milasin J. Bcl-2 expression in oral squamous cell carcinoma. Ann N Y Acad Sci. 2007;1095:19-25.

Chamorro-Petronacci CM, Lafuente-Ibanez De Mendoza I, Suarez-Peñaranda JM, Padin-Iruegas E, Blanco-Carrion A, Lorenzo-Pouso AI, Ortega KL, Pérez-Sayáns M. Immunohistochemical Characterization of Bcl-2 in Oral Potentially Malignant Disorders. Appl Immunohistochem Mol Morphol. 2021;29(9):706-712.

Segura IG, Secchi DG, Galíndez MF, Carrica A, BolognaMolina R, Brunotto M, Centeno VA. Connexin 43, Bcl-2, Bax, Ki67, and E-cadherin patterns in oral squamous cell carcinoma and its relationship with GJA1 rs12197797 C/G. Med Oral Patol Oral Cir Bucal. 2022;27(4):e366-e374.

Chen Y, Kayano T, Takagi M. Dysregulated expression of bcl-2 and bax in oral carcinomas: evidence of posttranscriptional control. J Oral Pathol Med. 2000;29(2):63- 69.

Khodapasand E, Jafarzadeh N, Farrokhi F, Kamalidehghan B, Houshmand M. Is Bax/Bcl-2 ratio considered as a prognostic marker with age and tumor location in colorectal cancer?. Iran Biomed J. 2015;19(2):69-75.

Escobar E, Gómez-Valenzuela F, Peñafiel C, HormazábalHevia A, Herrera-Fuentes C, Mori-Aliaga D. Immunohistochemical expression of COX-2, Ki-67, Bcl-2, Bax, VEGF and CD105 according to histological grading inoral squamous cell carcinoma. Rev Esp Patol.

;56(3):147-157.

Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495-516.

Sinicrope FA, Rego RL, Foster NR, Thibodeau SN, Alberts SR, Windschitl HE, Sargent DJ. Proapoptotic Bad and Bid protein expression predict survival in stages II and III colon cancers. Clin Cancer Res. 2008;14(13):4128-4133.

Zinkel SS. Investigation of the proapoptotic BCL-2 family member bid on the crossroad of the DNA damage response and apoptosis. Methods Enzymol. 2008;442:231-250.

Hattori T, Ookawa N, Fujita R, Fukuchi K. Heterodimerization of Bcl-2 and Bcl-X(L) with Bax and Bad in colorectal cancer. Acta Oncol. 2000;39(4):495-500.

Coutinho-Camillo CM, Lourenço SV, Nishimoto IN, Kowalski LP, Soares FA. Expression of Bcl-2 family proteins and association with clinicopathological characteristics of oral squamous cell carcinoma. Histopathology. 2010;57(2):304-316.

Kumar S, Dorstyn L, Lim Y. The role of caspases as executioners of apoptosis. Biochem Soc Trans. 2022;50(1):33-45.

Manoharan S, Sindhu G, Nirmal MR, Vetrichelvi V, Balakrishnan S. Protective effect of berberine on expression pattern of apoptotic, cell proliferative, inflammatory and angiogenic markers during 7,12-dimethylbenz(a)anthracene induced hamster buccal pouch carcinogenesis. Pak J Biol Sci. 2011;14(20):918-932.

Manu KA, Kuttan G. Ursolic acid induces apoptosis by activating p53 and caspase-3 gene expressions and suppressing NF-kappaB mediated activation of bcl-2 in B16F-10 melanoma cells. Int Immunopharmacol. 2008;8(7):974-981.

Yu YX, Gu ZL, Yin JL, Chou WH, Kwok CY, Qin ZH, Liang ZQ. Ursolic acid induces human hepatoma cell line SMMC-7721 apoptosis via p53-dependent pathway. Chin Med J (Engl). 2010;123(14):1915-1923.

Wang X, Zhang F, Yang L, Mei Y, Long H, Zhang X, Zhang J, Qimuge-Suyila, Su X. Ursolic acid inhibits proliferation and induces apoptosis of cancer cells in vitro and in vivo. J Biomed Biotechnol. 2011;2011:419343.

Wang S, Meng X, Dong Y. Ursolic acid nanoparticles inhibit cervical cancer growth in vitro and in vivo via apoptosis induction. Int J Oncol. 2017;50(4):1330-1340.

Shan J, Xuan Y, Zhang Q, Zhu C, Liu Z, Zhang S. Ursolic acid synergistically enhances the therapeutic effects of oxaliplatin in colorectal cancer. Protein Cell. 2016;7(8):571-585.

Published

2023-12-01

How to Cite

Karthik, M., Paari, E., Sivasankaran, S. M., Elanchezhiyan, C., & Manoharan, S. (2023). Ursolic Acid-Loaded Chitosan Nanoparticles Modulate the Expression Pattern of Apoptotic Markers Towards Oral Tumour Inhibition in Golden Syrian Hamsters: http://www.doi.org/10.26538/tjnpr/v7i11.33. Tropical Journal of Natural Product Research (TJNPR), 7(11), 5250–5255. Retrieved from https://tjnpr.org/index.php/home/article/view/3037

Most read articles by the same author(s)