Molecular Docking and Pharmacokinetics Studies of Syzygium aromaticum Compounds as Potential SARS-CoV-2 Main Protease Inhibitors http://www.doi.org/10.26538/tjnpr/v7i11.18

Main Article Content

Wafae Abdelli
Djahira Hamed

Abstract

The current outbreak of the novel coronavirus disease (COVID-19) caused by severe acute respiratory syndrome 2 (SARS-CoV-2), is the major matter of public health concern given its worldwide impact on human life. Despite the research efforts, no effective drug is available for the treatment of this pandemic so far. In the present study, bioactive compounds derived from Syzygium aromaticum were screened for their inhibitor potency against SARS-CoV-2 main protease (Mpro) using molecular docking. The analysis revealed that five out of the twenty phytocompounds tested, namely campesterol, stigmasterol, crategolic acid, oleanolic acid and bicornin displayed the highest binding affinity scores against the target protein (-7.7, -7.9, -8.4, -8.5 and -9.2 kcal/mol, respectively). The drug-like and ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) predictions showed that these ligands, except bicornin, fall within the Lipinski’s rule of five, and have a good pharmacokinetic profile. Our findings suggest therefore that these natural molecules could be considered as potential therapeutic drugs against SARS-CoV-2. 

Article Details

How to Cite
Abdelli, W., & Hamed, D. (2023). Molecular Docking and Pharmacokinetics Studies of Syzygium aromaticum Compounds as Potential SARS-CoV-2 Main Protease Inhibitors: http://www.doi.org/10.26538/tjnpr/v7i11.18. Tropical Journal of Natural Product Research (TJNPR), 7(11), 5155-5163. https://tjnpr.org/index.php/home/article/view/3016
Section
Articles
Author Biography

Djahira Hamed, Laboratory of Bioeconomics, Food Safety and Health, Department of Biology, Faculty of Nature and Life Sciences, Abdelhamid Ibn Badis-Mostaganem University, 27000, Mostaganem, Algeria

Laboratory of Beneficial Microorganisms, Functional Food and Health, Department of Biology, Faculty of Nature and Life Sciences, Abdelhamid Ibn Badis-Mostaganem University, 27000, Mostaganem, Algeria

References

Xu X, Chen P, Wang J, Feng J, Zhou H, Li X, Zhong W, Hao P. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci. 2020; 63(3): 457–460. https://doi.org/10.1007/ s11427-020-1637-5

Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020; 26(4): 450–452. https://doi.org/10.1038/s41591-020-0820-9

Worldmeter. Coronavirus update. [Online]. 2023 [cited 2023 Aug 06]. Available from : https://www.worldometers.info/coronavirus/

Chauhan S. Comprehensive review of coronavirus disease 2019 (COVID-19). Biomed J. 2020; 43(4): 334–340. https://doi.org/10.1016/j.bj.2020.05.023

Ludviggson JF. Systematic review of COVID-19 in children shows milder cases and a better prognosis than adults. Acta Paediatrica. 2020; 109(6): 1088–1095. https://doi.org/10.1111/ apa.15270

Rastogi M, Pandey N, Shukla A, Singh SK. SARS coronavirus 2: from genome to infectome. Respir Res. 2020; 21(1): 321-318. https://doi.org/10.1186/s12931-020-01581-z

Cao C, Cai Z, Xiao X, Rao J, Chen J, Hu N, Yang M, Xing X, Wang Y, Li M, Zhou B, Wang X, Wang J, Xue Y. The architecture of the SARS-CoV-2 RNA genome inside virion. Nat Commun. 2021; 12(1): 3904–3917. https://doi.org/10.1038/s41467-021-22785-x

Oso BJ, Adeoye AO, Olaoye IF. Pharmacoinformatics and hypothetical studies on allicin, curcumin, and gingerol as potential candidates against COVID-19-associate proteases. J Biomol Struct Dyn. 2020; 40(1): 389–400. https://doi.org/10.1080/07391102.2020.1813630

Mirza MU, Froeyen M. Structural elucidation of SARS-CoV-2 vital proteins: Computational methods reveal protential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicase. J Pharm Anal. 2020; 10(4): 320–328. https://doi.org/10.1016 /j.jpha.2020.04.008

Mahmud S, Hasan MR, Biswas S, Paul GK, Afrose S, Mita MA, Sultana Shimu MS, Promi MM, Hani U, Rahamathulla M, Khan MA, Zaman S, Uddin MS, Rahmatullah M, Jahan R, Alqahtani AM, Abu Saleh M, Bin Emran T. Screening of potent phytochemical inhibitors against SARS-CoV-2 main protease: An integrative computational approach. Front Bioinform. 2021; 1:717141. https://doi.org/10.3389/fbinf.2021.717141

Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C, Duan Y, Yu J, Wang L, Yang K, Liu F, Jiang R, Yang X, You T, Liu X, Yang X, Bai F, Liu H, Liu X, Guddat LW, Xu W, Xiao G, Qin C, Shi Z, Jiang H, Rao Z, Yang H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020; 582(7811): 289–293. https://doi.org/10.1038/s41586-020-2223-y

Muralidharan N, Sakthivel R, Velmurugan D, Gromiha MM. Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 protease against COVID-19. J Biomol Struct Dyn. 2021; 39(7): 2673–78. https://doi.org/10.1080/07391102.2020.1752802

Gyebi GA, Adegunloye AP, Ibrahim IM, Ogunyemi OM, Afolabi SO, Ogunro OB. Prevention of SARS-CoV-2 cell entry: insight from in silico interaction of drug-like alkaloids with spike glycoprotein, human ACE2, and TMPRSS2. J Biomol Struct Dyn. 2020; 40(5): 2121–2145. https://doi.org/10.1080/07391102.2020.1835726

Shree P, Mishra P, Selvaraj C, Singh SK, Chaube R, Garg N, Tripathi YB. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants- Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi)- a molecular docking study. J Biomol Struct Dyn. 2020; 40(1): 190– 203. https://doi.org/10.1080/07391102.2020.1810778

Hu Q, Xiong Y, Zhu GH, Zhang YN, Zhang YW, Huang P, Ge GB. The SARS-CoV-2 main protease (Mpro): Structure, function, and emerging therapies for COVID-19. MedComm. 2022; 3(3): e151. https://doi.org/10.1002/mco2.151

Ali MJ, Hanif M, Haider MA, Ahmed MU, Sundas F, Hirani A, Khan IA, Anis K, Karim AH. Treatment options for COVID-19: A review. Front Med. 2020; 7: 480–489. https://doi.org/10.3389/fmed.2020.00480

Mamilada E, Davella R, Gurrapu S, Shivakrishna P. In silico identification of clinically approved medicines against the main protease of SARS-CoV-2- A causative agent of COVID-19. Int J Life Sci Pharma Res. 2020; 11(1): 107–122. https://doi.org/10.22376/ijpbs /lpr.2021.11.1.L107-122

Teimury A, Mahmoodi Khaledi E. Current options in the treatment of COVID-19: A review. Risk Manag Healthc Policy. 2020; 13: 1999–2010. https://doi.org/10.2147/ RMHP.S265030

Asif M, Amir M, Hussain A, Achakzai NM, Natesan Pushparaj P, Rasool M. Role of tyrosine kinase inhibitor in chronic myeloid leukemia patients with SARS-CoV-2 infection: A narrative review. Medicine. 2022; 101(26): e29660. https://doi.org/10.1097/ MD.0000000000029660

Das B, Kutsal M, Das R. A geometric deep learning model for display and prediction of potential drug-virus interactions against SARS-CoV-2. Chemometr Intell Lab Syst. 2022; 229: 104640. https://doi.org/10.1016/j.chemolab.2022.104640

Ben-Shabat S, Yarmolinsky L, Porat D, Dahan A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv Transl Res. 2020; 10(2): 354–367. https://doi.org/10.1007/s13346-019-00691-6

Nguyen TTH, Jung JH, Kim MK, Lim S, Choi JM, Chung B, Kim DW, Kim D. The inhibitory effects of plant derivate polyphenols on the main protease of SARS Coronavirus 2 and their structure-activity relationship. Molecules. 2021; 26(7): 1924. https://doi.org/ 10.3390/molecules26071924

Xiong Y, Zhu GH, Zhang YN, Hu Q, Wang HN, Yu HN, Qin XY, Guan XQ, Xiang YW, Tang H, Ge GB. Flavonoids in Ampelopsis grossedentata as covalent inhibitors of SARS-CoV-2 3CLpro: Inhibition potentials, covalent binding sites and inhibitory mechanisms. IntJ Biol Macromol. 2021; 187: 976–987. https://doi.org/10.1016/j.ijbiomac.2021.07.167

Bhowmik D, Kumar KS, Yadav A, Srivastava S, Paswan S, Dutta AS. Recent trends in Indian traditional herbs Syzygium aromaticum and its health benefits. J Pharm Phytochem. 2012; 1: 13–22.

Cortés-Rojas DF, de Souza CRF, Oliveira WP. Clove (Syzygium aromaticum): A precious spice. Asian Pac J Trop Biomed. 2014; 4(2): 90–96. https://doi.org/10.1016/S2221-1691(14)60215-X

Batiha GES, Alkazami LM, Wasef LG, Beshbishy AM, Nadwa EH, Rashwan EK. Syzygium aromaticum (Myrtaceae): Traditional uses, bioactive chemical constituents, pharmacological and toxicological activities. Biomolecules. 2020; 10(2): 202. https://doi.org/10.3390/biom10020202

Yadav S, Gupta SK, Bharti D, Yogi B. Syzygium aromaticum (clove): A review on various phytochemicals and pharmacological activities in medicinal plant. World J Pharm Res. 2020; 9: 349–363. https://doi.org/10.20959/wjpr202011-18663

Sarker J, Islam MN. Comparative summary of the ethnomedicinal use, phytochemical constituents, and pharmacological properties of Syzygium aromaticum and Ocimum sanctum. Pther Psci D. 2022; 1(2): 82–100. https://doi.org/10.13140/RG.2.2.14143.59045

Benencia F, Courreges M. In vitro and in vivo activity of eugenol on human herpesvirus. Phytother Res. 2000; 14(7): 495–500. https://doi.org/10.1002/1099-1573(200011)14:7< 495::aid-ptr650>3.0.co;2-8

Dai JP, Zhao XF, Zeng J, Wan QY, Yang JC, Li WZ, Chen XX, Wang GF, Li KS. Drug screening for autophagy inhibitors based on the dissociation of Beclin1-Bcl2 complex using BiFC technique and mechanism of eugenol on anti-influenza A virus activity. PLoS One. 2013; 8(4): e61026. https://doi.org/10.1371/journal.pone.0061026

Lane T, Anantpadma M, Freundlich JS, Davey RA, Madrid PB, Ekins S. The natural product eugenol is an inhibitor of the ebola virus in vitro. Pharm Res. 2019; 36(7): 1–6. https://doi.org/10.1007/s11095-019-2629-0

Saleem HN, Batool F, Mansoor HJ, Shahzad-ul-Hussan S, Saeed M. Inhibition of dengue virus protease by eugeniin, isobiflorin, and biflorin isolated from the flower buds of Syzygium aromaticum (cloves). ACS Omega. 2019; 4(1): 1525–1533. https://doi.org/ 10.1021/acsomega.8b02861

Ijoma IK, Ajiwe VIE. Methyl ferulate induced conformational changes of deoxyHbS : implication on sickle erythrocyte polymerization. Mediterr J Chem. 2022; 12(1) : 100-111. http://dx.doi.org/10.13171/mjc02208061631ijoma

Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 2019; 47(D1): D1102–D1109. https://doi.org/10.1093/ nar/gky1033

Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization and analysis platform. J Cheminform. 2012; 4(1): 1–17. https://doi.org/10.1186/1758-2946-4-17

Morris GM, Huey R, Olson AJ. Using AutoDock for ligand-receptor docking. Curr Protoc Bioinformatics. 2008; 24: 8–14. https://doi.org/10.1002/0471250953.bi0814s24

Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010; 31(2): 455–461. https://doi.org/10.1002/jcc.21334

BIOVIA. Dassault Systèmes. Discovery Studio Visualizer, v21.1.0.20298; Dassault Systèmes: San Diego, CA, USA. 2021. https://discover.3ds.com/discovery-studio-visualizer-download

Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017; 7: 42717. https://doi.org/10.1038/srep42717

Pires DEV, Blundell TL, Ascher DB. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem. 2015; 58(9): 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2012; 64: 4–17. https://doi.org/10.1016/j.addr.2012.09.019

Xu X, Yan C, Zou X. Improving binding mode and binding affinity predictions of docking by ligand-based search of protein conformations: evaluation in D3R grand challenge 2015. J Comput Aided Mol Des. 2017; 31(8): 689–699. https://doi.org/10.1007/s10822-017-0038-1

Kong L, Liao Q, Zhang Y, Sun R, Zhu X, Zhang Q, Wang J, Wu X, Fang X, Zhu Y. Oleanolic acid and ursolic acid: Novel hepatitis C virus antivirals that inhibit NS5B activity. Antiviral Res. 2013; 98(1): 44–53. https://doi.org/10.1016/j.antiviral.2013.02.003

Yu D, Sakurai Y, Chen C, Chang F, Huang L, Kashiwad Y, Kuo-Hsiung L. Anti-AIDS agents 69. Moronic acid and other triterpene derivatives as novel potent anti-HIV agents. J Med Chem. 2006; 49(18): 5462–5469. https://doi.org/10.1021/jm0601912

Mukherjee H, Ojha D, Bag P, Chandel HS, Bhattacharyya S, Chatterjee TK, Mukherjee PK, Chakraborti S, Chattopadhyay D. Anti-herpes virus activities of Achyranthes aspera: An Indian ethnomedicine, and its triterpene acid. Microbiol Res. 2013; 168(4): 238–244. https://doi.org/10.1016/j.micres.2012.11.002

Yang Y, He H, Chang H, Yu Y, Yang M, He Y. Multivalent oleanolic acid human serum albumin conjugate as nonglycosylated neomucin for influenza virus capture and entry inhibition. Eur J Med Chem. 2018; 143: 1723–1731. https://doi.org/10.1016/ j.ejjmech.2017.10.070

Parra A, Rivas F, Lopez PE, Garcia-Granados A, Martinez A, Albericio F, Marquez N, Muñoz E. Solution- and solid-phase synthesis and anti-HIV activity of maslinic acid derivatives containing amino acids and peptides. Bioorg Med Chem. 2009; 17(3): 1139–1145. https://doi.org/10.1016/j.bmc.2008.12.041

Ortiz-López T, Borges-Argáez R, Ayora-Talavera G, Canto-Ramírez E, Cetina-Montejo L, May-May A, Escalante-Erosa F, Cáceres-Farfán M. Bioassay-guided fractionation of Erythrostemon yucatanensis (Greenm.) Gagnon & GP Lewis components with anti hemagglutinin binding activity against Influenza A/H1N1 virus. Molecules. 2022; 27(17): 5494. https://doi.org/10.3390/molecules27175494

Rehman MT, AlAjmi MF, Hussain A. Natural compounds as inhibitors of SARS-CoV-2 main protease (3CLpro): A molecular docking and simulation approach to combat COVID- 19. Curr Pharm Des. 2020; 27(33): 3577–3589. https://doi.org/10.26434/chemrxiv. 12362333.v2

Rangsinth P, Sillapachaiyaporn C, Nilkhet S, Tencomnao T, Ung AT, Chuchawankul S. Mushroom-derived bioactive compounds potentially serve as the inhibitors of SARS-CoV-2 main protease: An in silico approach. J Tradit Complement Med. 2021; 11(2): 158–172. https://doi.org/10.1016/j.jtcme.2020.12.002

Jannat K, Hasan A, Al Mahamud R, Jahan R, Bondhon TA, Farana BN, Rahmatullah M. In silico screening of Vigna radiata and Vigna mungo phytochemicals for their binding affinity to SARS-CoV-2 (COVID-19) main protease (3CLpro). J Med Plants Stud. 2020; 8(4): 89–95.

Bao LM, Eerdunbayaer, Nozaki A, Takahashi E, Okamoto K, Ito H, Hatano T. Hydrolysable tannins isolated from Syzygium aromaticum : Structure of a new C-glucosidic ellagitannin and spectral features of tannins with a tergalloyl group. Heterocycles. 2012; 85(2): 365–381. https://doi.org/10.3987/COM-11-12392

Sampangi-Ramaiah MH, Vishwakarma R, Shaanker RU. Molecular docking analysis of selected natural products from plants for inhibition of SARS-CoV-2 main protease. Curr Sci. 2020; 118(7): 1087–1092. https://doi.org/10.18520/cs/v118/i7/1087-1092

Ali MC, Nur AJ, Al Hasib R, All Rakib R, Khatun MS, Rahman MM, Rahman MS, Alam MK, Al Mashud MA, Jamal MAHM. Syzygium aromaticum as a possible source of SARS-CoV-2 main protease inhibitors: Evidence from a computational investigation. J Adv Biotechnol Exp Ther. 2022; 5(1): 218–228. https://doi.org/10.5455/jabet.2022.d109

Pillaiyar T, Manickam M, Namasivayam V, Hayashi Y, Jung SH. An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: peptidomimetics and small molecule chemotherapy. Jja Med Chem. 2016; 59(14): 6595–6628. https://doi.org/10.1021/acs.jmedchem.5b01461

Chowdhury P. In silico investigation of phytoconstituents from Indian medicinal herb Tinospora cordifolia (giloy) against SARS-CoV-2 (COVID-19) by molecular dynamics approach. J Biomol Struct Dyn. 2020; 39(17): 6792–6809. https://doi.org/10.1080/ 07391102.2020.1803968

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001; 46(1-3): 3–26. https://doi.org/10.1016/s0169-409x(00)00129-0

Martin YC. A bioavailability score. J Med Chem. 2005; 48(9): 3164–3170. https://doi.org/ 10.1021/jm0492002

Maya PG, Mahayasih W, Harizal, Herman, Ahmad I. In silico identification of natural products from Centella asiatica as severe acute respiratory syndrome-coronavirus 2 main protease inhibitor. J Adv Pharm Technol Res. 2021; 12(3): 261–266. https://doi.org/10.4103 /japtr.JAPTR_297_20

Adewole KE, Ishola AA. Phytosterols and triterpenes from Morinda lucida Benth (Rubiaceae) as potential inhibitors of anti-apoptotic BCL-XL, BCL-2, and MCL-1: an in silico study. J Recept Signal Transduct Res. 2019; 39(1): 87–97. https://doi.org/10.1080/ 10799893.2019.1625062

Ishola AA, Adewole KE. Phytosterols and triterpenes from Morinda lucida Benth. Exhibit binding tendency against class I HDAC and HDAC7 isoforms. Mol Biol Rep. 2019; 46(2): 2307–2325. https://doi.org/10.1007/s11033-019-04689-8

Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002; 45(12): 2615–2623. https://doi.org/10.1021/jm020017n

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997; 23(1-3): 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1

Alavijeh MS, Chishty M, Qaiser MZ, Palmer AM. Drug metabolism and pharmacokinetics, the blood-brain barrier, and central nervous system drug discovery. NeuroRx. 2005; 2(4): 554–571. https://doi.org/10.1602/neurorx.2.4.554

De Vrieze M, Janssens P, Szucs R, Van der Eycken J, Lynen F. In vitro prediction of human intestinal absorption and blood-brain barrier partitioning: Development of a lipid analog for micellar liquid chromatography. Anal Bioanal Chem. 2015; 407(24): 7453–7466. https://doi.org/10.1007/s00216-015-8911-z

Matondo A, Kilembe JT, Ngoyi EM, Kabengele CN, Kasiama GN, Lengbiye EM, Mbadiko CM, Inkoto CL, Bongo GN, Gbolo BZ, Falanga CM, Mwanangombo DT, Opota DO, Tshibangu DST, Tshilanda DD, Ngbolua KTN, Mpiana PT. Oleanolic acid, ursolic acid and apigenin from Ocimum basilicum as potential inhibitors of the SARS-CoV-2 main protease: A molecular docking study. Int J Path Res. 2021; 6(2): 1–16. https://doi.org/ 10.9734/ijpr/2021/v6i230156

Mvondo JGM, Matondo A, Mawete DT, Bambi SMN, Mbala BM, Lohohola PO. In silico ADMET/T properties of quinine derivatives using SwissADME and pkCSM webservers. Int J Tropic Dis Health. 2021; 42: 1–12. https://doi.org/10.9734/IJTDH/2021/v42i1130492

Wang NN, Dong J, Deng YH, Zhu MF, Wen M, Yao ZJ, Lu AP, Wang JB, Cao DS. ADME properties evaluation in drug discovery: Prediction of Caco-2 cell permeability using a combination of NSGA-II and boosting. J Chem Inf Model. 2016; 56(4): 763–773. https://doi.org/10.1021/acs.jcim.5b00642

van Waterschoot RA, Schinkel AH. A critical analysis of the interplay between cytochrome P450 3A and P-glycoprotein: recent insights from knockout and transgenic mice. Pharmacol Rev. 2011; 63(2): 390–410. https://doi.org/10.1124/pr.110.002584

Jouan E, Le Vée M, Mayati A, Denizot C, Parmentier Y, Fardel O. Evaluation of glycoprotein inhibitory potential using a rhodamine 123 accumulation assay. Pharmaceutics. 2016; 8(2): 1–13. https://doi.org/10.3390/pharmaceutics8020012

Sychev DA, Ashraf GM, Svistunov AA, Maksimov ML, Tarasov VV, Chubarev VN, Otdelenov VA, Denisenko NP, Barreto GE, Aliev G. The cytochrome P450 isoenzyme and some new opportunities for the prediction of negative drug interactions in vivo. Drug Des Dev Ther. 2018; 12: 1147–1156. https://doi.org/10.2147/DDDT.S149069

Ekowati J, Diyah NW, Nofianti KA, Hamid IS, Siswandono S. Molecular docking of ferulic acid derivatives on P2Y12 receptor and their ADMET prediction. J Math Fundam Sci. 2018; 50(2): 203–219. https://doi.org/10.5614/j.math.fund.sci.2018.50.2.8

OECD. Test No. 423: Acute Oral toxicity - Acute Toxic Class Method. Organisation for Economic Co-operation and Development, Paris. 2002. http://www.oecdilibrary.org/ content/book/9789264071001-en

Pratama MRF, Poerwono H, Siswodiharjo S. ADMET properties of novel 5-O-benzoylpinostrobin derivatives. J Basic Clin Physiol Pharmacol. 2019; 30(6): 20190251. https://doi.org/10.1515/jbcpp-2019-0251