Potentiality of Coffee (Coffea robusta) and its Bioactive Compounds in Memory Function: A Review



  • Nazir Ahmad Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia.
  • Kaisun N. Lesa Department of Food and Nutrition Science, Khulna City Corporation Women’s College, Affiliated by Khulna University, Khulna, Bangladesh.
  • Nanang Fakhrudin Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia.
  • Zullies Ikawati Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia.


neuroprotective, Alzheimer, chlorogenic acid, caffeine, coffee


Memory dysfunction is a neurodegenerative disorder in which a person loses his memory, where AD (Alzheimer’s disease) is appraised as the major trigger of it. Today, everyday consumption of coffee has become a modern lifestyle, and this culture has gained more attention to the researchers. In this study, the potentiality of Coffea robusta and its bioactive compounds in memory function are presented. The latest articles (2018 to 2023) from databases (Scopus, Google Scholar and PubMed) were screened and 120 references were selected for this review. The major keywords for searching were “Coffee”, “Coffea robusta”, “bioactive compounds”, “memory dysfunction” and “Alzheimer’s disease”. For the improvement of memory function, C. robusta and its bioactive compounds, such as caffeine acts as antioxidant and its major targets are adenosine receptors while chlorogenic acid reduces amyloid β (Aβ) deposition, neo and crypto-chlorogenic acid scavenge reactive oxygen species (ROS) in neuronal cells, moreover, trigonelline prevents neuronal injury by bringing down astrocyte activity, and antioxidant activity of melanoidins (especially interfering redox-sensitive transcription factors) contribute to their beneficial effects in AD and impart neuroprotection as well as increase memory function.

Author Biographies

Kaisun N. Lesa, Department of Food and Nutrition Science, Khulna City Corporation Women’s College, Affiliated by Khulna University, Khulna, Bangladesh.

Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.

Department of Pediatrics, Nihon University Hospital, Tokyo, Japan.

Department of Nutrition and Food Technology, Jessore University of Science and Technology, Jessore, Bangladesh.

Nanang Fakhrudin, Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia.

Medicinal Plants and Natural Products Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Sleman 55281, Yogyakarta, Indonesia.


Maity S, Farrell K, Navabpour S, Narayanan SN, Jarome TJ. Epigenetic Mechanisms in Memory and Cognitive Decline Associated with Aging and Alzheimer's Disease. Int J Mol Sci. 2021; 22(22):12280–12302. doi: 10.3390/IJMS222212280.

Schreiner TG, Popescu BO. Impact of Caffeine on Alzheimer's Disease Pathogenesis-Protective or Risk Factor? Life. 2022; 12(3):330–348. doi: 10.3390/LIFE12030330.

Tahami Monfared AA, Byrnes MJ, White LA, Zhang Q. Alzheimer’s Disease: Epidemiology and Clinical Progression. Neurol Ther. 2022; 11(2):553–569. doi: 10.1007/S40120-022-00338-8.

Wojtunik-kulesza K, Rudkowska M, Kasprzak-drozd K, Oniszczuk A, Borowicz-reutt K. Activity of Selected Group of Monoterpenes in Alzheimer’s Disease Symptoms in Experimental Model Studies–A Non-Systematic Review. Int J Mol Sci. 2021; 22(14):7366–7366. doi: 10.3390/IJMS22147366.

Uwishema O, Mahmoud A, Sun J, Correia IFS, Bejjani N, Alwan M, Nicholas A, Oluyemisi A, Dost B. Is Alzheimer’s disease an infectious neurological disease? A review of the literature. Brain Behav. 2022; 12(8):e2728–e2732. doi: 10.1002/BRB3.2728.

Tatulian SA. Challenges and hopes for Alzheimer’s disease. Drug Discov Today. 2022; 27(4):1027–1043. doi: 10.1016/J.DRUDIS.2022.01.016.

Lavery LL, Dodge HH, Snitz B, Ganguli M. Cognitive Decline and Mortality in a Community-Based Cohort: The Movies Project. J Am Geriatr Soc. 2009; 57(1):94–100. doi: 10.1111/J.1532-5415.2008.02052.X.

Tarawneh HY, Menegola HK, Peou A, Tarawneh H, Jayakody DMP. Central Auditory Functions of Alzheimer's Disease and Its Preclinical Stages: A Systematic Review and Meta-Analysis. Cells. 2022; 11(6):1007–1031. doi: 10.3390/CELLS11061007.

Muhie SH. Strategies to improve the quantity and quality of export coffee in Ethiopia, a look at multiple opportunities. J Agric Food Res. 2022; 10(2022):100372–100379. doi: 10.1016/J.JAFR.2022.100372.

Purwoko T, Suranto, Setyaningsih R, Marliyana SD. Chlorogenic acid and caffeine content of fermented robusta bean. Biodiversitas. 2022; 23(2):902–906. doi: 10.13057/biodiv/d230231.

Lin YH, Huang HW, Wang CY. Effects of High Pressure-Assisted Extraction on Yield, Antioxidant, Antimicrobial, and Anti-diabetic Properties of Chlorogenic Acid and Caffeine Extracted from Green Coffee Beans. Food Bioprocess Technol. 2022; 15(7):1529–1538. doi: 10.1007/S11947-022-02828-X/FIGURES/3.

Liu X, Fei Y, Wang W, Lei S, Cheng C, Xing Z. Physicochemical difference of coffee beans with different species, production areas and roasting degrees. Beverage Plant Res. 2022; 2(1):1–8. doi: 10.48130/BPR-2022-0007.

International Coffee Organization (ICO). Trade statistics-July 2022. https://www.ico.org/

Šeremet D, Fabečić P, Cebin AV, Jarić AM, Pudić R, Komes D. Antioxidant and Sensory Assessment of Innovative Coffee Blends of Reduced Caffeine Content. Mol. 2022; 27(2):448–466. doi: 10.3390/MOLECULES27020448.

Bravim DG, de Oliveira TM, do Rosário DK, Batista NN, Schwan RF, Coelho JM, Bernardes PC. Inoculation of yeast and bacterium in wet-processed Coffea canephora. Food Chem. 2023; 400(2023):134107–134116. doi: 10.1016/J.FOODCHEM.2022.134107.

Tarigan EB, Wardiana E, Hilmi YS, Komarudin NA. The changes in chemical properties of coffee during roasting: A review. IOP Conf Ser Earth Environ Sci. 2022; 974(1):012115–012124. doi: 10.1088/1755-1315/974/1/012115.

Tran DM. Taxonomic and functional profiles of Coffea canephora endophytic microbiome in the Central Highlands region, Vietnam, revealed by analysis of 16S rRNA metagenomics sequence data. Data Br. 2022; 43(2022):108372–108378. doi: 10.1016/J.DIB.2022.108372.

Esquivel P, Jiménez VM. Functional properties of coffee and coffee by-products. Food Res Int. 2012; 46(2):488–495. doi: 10.1016/J.FOODRES.2011.05.028.

Krishnan S. Coffee: Genetic Diversity, Erosion, Conservation, and Utilization. Cash Crop. 2022; 632(11):55–80. doi: 10.1007/978-3-030-74926-2_3.

Vats A. Pharmacological properties of Green coffee: A review Akshita Vats. Pharma Innov J. 2022; 11(7):2970–2976.

Ciaramelli C, Palmioli A, De Luigi A, Colombo L, Sala G, Riva C, Zoia CP, Salmona, M, Airoldi C. NMR-driven identification of anti-amyloidogenic compounds in green and roasted coffee extracts. Food Chem. 2018; 252(2018):171–180. doi: 10.1016/J.FOODCHEM.2018.01.075.

Fatimatuzzahro N, Prasetya RC, Anggara KDN. Robusta Coffee (Coffea canephora) Down Regulation TNF-α Expression in Carotid Artery Endothelial Cell of Hyperlipidemia Rat Model. Trends Sci. 2022; 19(4):5–10. doi: 10.48048/tis.2022.2199.

Herawati D, Giriwono PE, Dewi FNA, Kashiwagi T, Andarwulan N. Three major compounds showing significant antioxidative, α-glucosidase inhibition, and antiglycation activities in Robusta coffee brew. Int J Food Prop. 2019; 22(1):994–1010. doi: 10.1080/10942912.2019.1622562.

Hoseini M, Cocco S, Casucci C, Cardelli V, Corti G. Coffee by-products derived resources. A review. Biomass and Bioenergy. 2021; 148(2021):106009–106019. doi: 10.1016/J.BIOMBIOE.2021.106009.

Farah A, Lima J de P. Consumption of chlorogenic acids through coffee and health implications. Beverages. 2019; 5(1): 5010011–5010031. doi: 10.3390/beverages5010011.

Thonda S, Puttapaka SN, Kona SV, Kalivendi SV. Extracellular-Signal-Regulated Kinase Inhibition Switches APP Processing from β- To α-Secretase under Oxidative Stress: Modulation of ADAM10 by SIRT1/NF-κB Signaling. ACS Chem Neurosci. 2021; 12(21):4175–4186. doi: 10.1021/ACSCHEMNEURO.1C00582/ASSET/IMAGES/LARGE/CN1C00582_0008.JPEG.

Cho Y, Bae HG, Okun E, Arumugam T V, Jo DG. Physiology and pharmacology of amyloid precursor protein. Pharmacol Ther. 2022; 235(2022):108122–108140. doi: 10.1016/J.PHARMTHERA.2022.108122.

Helmi H, Fakhrudin N, Nurrochmad A, Ikawati Z. Plant Natural Products for Cognitive Impairment: A Review of the preclinical Evidence. J Appl Pharm Sci. 2021; 11(6):1–14. doi: 10.7324/JAPS.2021.110601.

Xu L, Li M, Wei A, Yang M, Li C, Liu R, Zheng Y, Chen Y, Wang Z, Wang K, Wang T. Treadmill exercise promotes E3 ubiquitin ligase to remove amyloid β and P-tau and improve cognitive ability in APP/PS1 transgenic mice. J Neuroinflammation. 2022; 19(1):1–14. doi: 10.1186/S12974-022-02607-7.

Shen F, Regmi D, Islam M, Raja Somu D, Merk V, Du D. Effects of zinc and carnosine on aggregation kinetics of Amyloid-β40 peptide. Biochem Biophys Reports. 2022; 32(2022):101333–101340. doi: 10.1016/J.BBREP.2022.101333.

Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW. A protein factor essential for microtubule assembly. Proc Natl Acad Sci. 1975; 72(5):1858–1862. doi: 10.1073/PNAS.72.5.1858.

Wegmann S, Biernat J, Mandelkow E. A current view on Tau protein phosphorylation in Alzheimer’s disease. Curr Opin Neurobiol. 2021; 69(2021):131–138. doi: 10.1016/J.CONB.2021.03.003.

Hamano T, Enomoto S, Shirafuji N, Ikawa M, Yamamura O, Yen SH, Nakamoto Y. Autophagy and Tau Protein. Int J Mol Sci. 2021; 22(14):7475–7495. doi: 10.3390/IJMS22147475.

Bhatia V, Sharma S. Role of mitochondrial dysfunction, oxidative stress and autophagy in progression of Alzheimer’s disease. J Neurol Sci. 2021; 421(2021):117253–117266. doi: 10.1016/J.JNS.2020.117253.

Pantiya P, Thonusin C, Chattipakorn N, Chattipakorn SC. Mitochondrial abnormalities in neurodegenerative models and possible interventions: Focus on Alzheimer’s disease, Parkinson’s disease, Huntington’s disease. Mitochondrion. 2020; 55(4):14–47. doi: 10.1016/j.mito.2020.08.003.

Jaganjac M, Milkovic L, Zarkovic N, Zarkovic K. Oxidative stress and regeneration. Free Radic Biol Med. 2022; 181(11):154–165. doi: 10.1016/j.freeradbiomed.2022.02.004.

Yang C, Yang Q, Xiang Y, Zeng XR, Xiao J, Le WD. The neuroprotective effects of oxygen therapy in Alzheimer’s disease: a narrative review. Neural Regen Res. 2023; 18(1):57–63. doi: 10.4103/1673-5374.343897.

Hindle A, Singh SP, Pradeepkiran JA, Bose C, Vijayan M, Kshirsagar S, Sawant NA, Reddy PH. Rlip76: An Unexplored Player in Neurodegeneration and Alzheimer's Disease? Int J Mol Sci. 2022; 23(11):6098–6113. doi: 10.3390/IJMS23116098.

Singh NK, Garabadu D. Quercetin Exhibits α7nAChR/Nrf2/HO-1-Mediated Neuroprotection Against STZ-Induced Mitochondrial Toxicity and Cognitive Impairments in Experimental Rodents. Neurotox Res. 2021; 39(6):1859–79. doi: 10.1007/S12640-021-00410-5.

Beura SK, Dhapola R, Panigrahi AR, Yadav P, Reddy DH, Singh SK. Redefining oxidative stress in Alzheimer’s disease: Targeting platelet reactive oxygen species for novel therapeutic options. Life Sci. 2022; 306(2022):120855–120871. doi: 10.1016/J.LFS.2022.120855.

Cai Q, Tammineni P. Mitochondrial Aspects of Synaptic Dysfunction in Alzheimer’s Disease. J Alzheimer’s Dis. 2017; 57(4):1087–1103. doi: 10.3233/JAD-160726.

Villavicencio-Tejo F, Olesen MA, Aránguiz A, Quintanilla RA. Activation of the Nrf2 Pathway Prevents Mitochondrial Dysfunction Induced by Caspase-3 Cleaved Tau: Implications for Alzheimer’s Disease. Antioxidants. 2022; 11(3): 11030515–11030531. doi: 10.3390/ANTIOX11030515.

Aghajanov M, Chavushyan V, Matinyan S, Danielyan M, Yenkoyan K. Alzheimer’s disease-like pathology-triggered oxidative stress, alterations in monoamines levels, and structural damage of locus coeruleus neurons are partially recovered by a mix of proteoglycans of embryonic genesis. Neurochem Int. 2019; 131(2019):104531–104539. doi: 10.1016/J.NEUINT.2019.104531.

De La Monte SM, Tong M. Mechanisms of nitrosamine-mediated neurodegeneration: potential relevance to sporadic Alzheimer’s disease. J Alzheimers Dis. 2009; 17(4):817–825. doi: 10.3233/JAD-2009-1098.

Akbari B, Baghaei-Yazdi N, Bahmaie M, Mahdavi Abhari F. The role of plant-derived natural antioxidants in reduction of oxidative stress. BioFactors. 2022; 48(3):611–633. doi: 10.1002/BIOF.1831.

Lucon-Xiccato T, Tomain M, D’Aniello S, Bertolucci C. BDNF loss affects activity, sociability, and anxiety-like behaviour in zebrafish. Behav Brain Res. 2023; 436(2023):114115–114135. doi: 10.1016/J.BBR.2022.114115.

Liu M, Zeng M, Wang S, Cao B, Guo P, Zhang Y, Jia J, Zhang Q, Zhang B, Wang R, Li J. Thymidine and 2′-deoxyuridine reduce microglial activation and improve oxidative stress damage by modulating glycolytic metabolism on the Aβ25-35-induced brain injury. Arch Biochem Biophys. 2022; 729(4):109377–109390. doi: 10.1016/j.abb.2022.109377.

Rosliuk D, Rutkaite R, Ivanauskas L, Jakstas V. Interaction between cross-linked cationic starch microgranules and chlorogenic acid isomers in artichoke and green coffee bean aqueous extracts. J Chromatogr B. 2020; 1160(2020):122385–122392. doi: 10.1016/J.JCHROMB.2020.122385.

Yelanchezian YMM, Waldvogel HJ, Faull RLM, Kwakowsky A. Neuroprotective Effect of Caffeine in Alzheimer's Disease. Mol. 2022a; 27(12):3737–3778. doi: 10.3390/MOLECULES27123737.

Gezici S, Sekeroglu N. Comparative biological analyses on kenger and kenger coffee as novel functional food products. J Food Sci Technol. 2022; 59(6):2328–2338. doi: 10.1007/S13197-021-05248-5.

Yin X, He X, Wu L, Yan D, Yan S. Chlorogenic Acid, the Main Antioxidant in Coffee, Reduces Radiation-Induced Apoptosis and DNA Damage via NF-E2-Related Factor 2 (Nrf2) Activation in Hepatocellular Carcinoma. Oxid Med Cell Longev. 2022; 2022, 1–14. doi. 10.1155/2022/4566949

Du C, Feng W, Dai X, Wang J, Geng D, Li X, Chen Y, Zhang J. Cu2+-Chelatable and ROS-Scavenging MXenzyme as NIR-II-Triggered Blood–Brain Barrier-Crossing Nanocatalyst against Alzheimer’s Disease. Small, 2022; 18(39):2203031. https://doi.org/10.1002/SMLL.202203031.

Kim MW, Choe K, Park JS, Lee HJ, Kang MH, Ahmad R, Kim MO. Pharmacological Inhibition of Spleen Tyrosine Kinase Suppressed Neuroinflammation and Cognitive Dysfunction in LPS-Induced Neurodegeneration Model. Cells. 2022; 11(11):1777–1793. doi: 10.3390/CELLS11111777/S1.

Ahmad N, Lesa KN, Sudarmanto A, Fakhrudin N, Ikawati Z. (2022). The role of Phosphodiesterase-1 and its natural product inhibitors in Alzheimer’s disease: A review. Front Pharmacol. 13(12), 1–16. doi. 10.3389/fphar.2022.1070677.

Ali A, Zahid HF, Cottrell JJ, Dunshea FR. A Comparative Study for Nutritional and Phytochemical Profiling of Coffea arabica (C. arabica) from Different Origins and Their Antioxidant Potential and Molecular Docking. Molecules. 2022; 27(16):5126–5141. doi: 10.3390/MOLECULES27165126/S1.

Marucci G, Buccioni M, Ben DD, Lambertucci C, Volpini R, Amenta F. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology. 2021; 190(2021):108352–108367. doi: 10.1016/J.NEUROPHARM.2020.108352.

Zidan NS, Omran AME, Rezk SM, Atteia HH, Sakran MI. Anti-Alzheimer’s disease potential of Arabian coffee versus Date palm seed extract in male rats. J Food Biochem. 2022; 46(1), e14017. doi: 10.1111/JFBC.14017

Gardener SL, Rainey-Smith SR, Villemagne VL, Fripp J, Doré V, Bourgeat P, Taddei K, Fowler C, Masters CL, Maruff P, Rowe CC. Higher Coffee Consumption Is Associated With Slower Cognitive Decline and Less Cerebral Aβ-Amyloid Accumulation Over 126 Months: Data From the Australian Imaging, Biomarkers, and Lifestyle Study. Front Aging Neurosci. 2021; 13(11):1–8. doi: 10.3389/fnagi.2021.744872.

Paz-Graniel I, Babio N, Becerra-Tomás N, Toledo E, Camacho-Barcia L, Corella D, Castañer-Niño O, Romaguera D, Vioque J, Alonso-Gómez ÁM, Wärnberg J. Association between coffee consumption and total dietary caffeine intake with cognitive functioning: cross-sectional assessment in an elderly Mediterranean population. Eur J Nutr. 2021; 60(5):2381–2396. doi: 10.1007/S00394-020-02415-W/FIGURES/1.

Jiang H, Liu J, Guo S, Zeng L, Cai Z, Zhang J, Wang L, Li Z, Liu R. miR-23b-3p rescues cognition in Alzheimer’s disease by reducing tau phosphorylation and apoptosis via GSK-3β signaling pathways. Mol Ther - Nucleic Acids. 2022; 28(1):539–557. doi: 10.1016/J.OMTN.2022.04.008.

Mancini RS, Wang Y, Weaver DF. Phenylindanes in brewed coffee inhibit amyloid-beta and tau aggregation. Front Neurosci. 2018; 12(10):1–14. doi: 10.3389/fnins.2018.00735.

Geoffroy C, Paoletti P, Mony L. Positive allosteric modulation of NMDA receptors: mechanisms, physiological impact and therapeutic potential. Physiol J. 2022; 600(2), 233–259. doi. 10.1113/JP280875.

Kumar G, Mukherjee S, Paliwal P, Singh SS, Birla H, Singh SP, Krishnamurthy S, Patnaik R. Neuroprotective effect of chlorogenic acid in global cerebral ischemia-reperfusion rat model. Naunyn Schmiedebergs Arch Pharmacol. 2019; 392(10):1293–1309. doi: 10.1007/S00210-019-01670-X/TABLES/1.

Gessi S, Poloni TE, Negro G, Varani K, Pasquini S, Vincenzi F, Borea PA, Merighi S. A2A Adenosine Receptor as a Potential Biomarker and a Possible Therapeutic Target in Alzheimer’s Disease. Cells. 2021; 10(9):2344–2359. doi: 10.3390/CELLS10092344.

Tyrtyshnaia A, Konovalova S, Ponomarenko A, Egoraeva A, Manzhulo I. Fatty Acid-Derived N-acylethanolamines Dietary Supplementation Attenuates Neuroinflammation and Cognitive Impairment in LPS Murine Model. Nutrients. 2022; 14(18):3879–3899. doi: 10.3390/NU14183879/S1.

Knox EG, Aburto MR, Clarke G, Cryan JF, O’Driscoll CM. The blood-brain barrier in aging and neurodegeneration. Mol. Psychiatry. 2022; 27(6):2659–2673. doi: 10.1038/s41380-022-01511-z.

Liu J, Zhang Y, Ye T, Yu Q, Yu J, Yuan S, Gao X, Wan X, Zhang R, Han W, Zhang Y. Effect of Coffee against MPTP-Induced Motor Deficits and Neurodegeneration in Mice Via Regulating Gut Microbiota. J Agric Food Chem. 2022; 70(1):184–195. doi: 10.1021/ACS.JAFC.1C06998/ASSET/IMAGES/LARGE/JF1C06998_0009.JPEG.

Kowalska K, Hernández-Ledesma B. Lingonberry (Vaccinium vitis-idaea L.) Fruit as a Source of Bioactive Compounds with Health-Promoting Effects–A Review. Int J Mol Sci. 2021; 22(10):5126–5141. doi: 10.3390/IJMS22105126.

Valada P, Alçada-Morais S, Cunha RA, Lopes JP. Thebromine Targets Adenosine Receptors to Control Hippocampal Neuronal Function and Damage. Int J Mol Sci. 2022; 23(18):10510–10526. doi: 10.3390/IJMS231810510.

Ahmad N, Lesa KN, Ujiantari NSO, Sudarmanto A, Ikawati Z, Fakhrudin N. Phytochemical identification and in silico study of ethanolic extract of white cabbage as a phosphodiesterase 1B inhibitor. J. Herbmed Pharmacol., 2023, 12(4), 521–535. doi: 10.34172/jhp.2023.45004.

Acquavia MA, Pascale R, Foti L, Carlucci G, Scrano L, Martelli G, Brienza M, Coviello D, Bianco G, Lelario F. Analytical methods for extraction and identification of primary and secondary metabolites of apple (Malus domestica) fruits: A review. Separations. 2021; 8(7):91–117. doi: 10.3390/SEPARATIONS8070091/S1.

Zhai X, Yang M, Zhang J, Zhang L, Tian Y, Li C, Bao L, Ma C, Abd El-Aty AM. Feasibility of Ultrasound-Assisted Extraction for Accelerated Cold Brew Coffee Processing: Characterization and Comparison With Conventional Brewing Methods. Front Nutr. 2022; 9(3):1–13. doi: 10.3389/fnut.2022.849811.

Divekar PA, Narayana S, Divekar BA, Kumar R, Gadratagi BG, Ray A, Singh AK, Rani V, Singh V, Singh AK, Kumar A. Plant Secondary Metabolites as Defense Tools against Herbivores for Sustainable Crop Protection. Int J Mol Sci. 2022; 23(5):2690–2714. doi: 10.3390/IJMS23052690/S1.

Singh J, Prasad R, Kaur HP, Jajoria K, Chahal AS, Verma A, Kara M, Assouguem A, Bahhou J. Bioactive Compounds, Pharmacological Properties, and Utilization of Pomegranate (Punica granatum L.): A Comprehensive Review. Trop J Nat Prod Res. 2023;7(9):3856–3873.

Zhang B, Liu Y, Wang X, Deng Y, Zheng X. Cognition and Brain Activation in Response to Various Doses of Caffeine: A Near-Infrared Spectroscopy Study. Front Psychol. 2020; 11(2020):1393–1402. doi: 10.3389/FPSYG.2020.01393/BIBTEX.

Anjani G, Widyastuti N, Masruroh Z, Yuliana RAD, Almira VG, Tsani AFA, Nissa CH, Prawira-Atmaja M. Bioactive components and antibacterial activity in robusta coffee leaves (Coffea canephora). Int J Pharm Res. 2020; 12(3):1374–1382.

Portela C da S, Almeida IF de, Mori ALB, Yamashita F, Benassi M de T. Brewing conditions impact on the composition and characteristics of cold brew Arabica and Robusta coffee beverages. LWT- Food Sci. Technol. 2021; 143(5):111090–111099. doi: 10.1016/J.LWT.2021.111090.

Wang C, Zhu Y, Dong C, Zhou Z, Zheng X. Effects of Various Doses of Caffeine Ingestion on Intermittent Exercise Performance and Cognition. Brain Sci. 2020; 10(9):595–607. doi: 10.3390/BRAINSCI10090595.

Magenis ML, Damiani AP, Franca IB, de Marcos PS, Effting PS, Muller AP, de Bem Silveira G, Correa ME, Medeiros EB, Silveira PC, Budni J. Behavioral, genetic and biochemical changes in the brain of the offspring of female mice treated with caffeine during pregnancy and lactation. Reprod Toxicol. 2022; 112(2022):119–135. doi: 10.1016/J.REPROTOX.2022.07.005.

Carman AJ, Dacks PA, Lane RF, Shineman DW, Fillit HM. Current evidence for the use of coffee and caffeine to prevent age-related cognitive decline and Alzheimer’s disease. J Nutr Heal aging. 2014; 18(4):383–392. doi: 10.1007/S12603-014-0021-7.

Alves-Martinez P, Atienza-Navarro I, Vargas-Soria M, Carranza-Naval MJ, Infante-Garcia C, Benavente-Fernandez I, Del Marco A, Lubian-Lopez S, Garcia-Alloza M. Caffeine Restores Neuronal Damage and Inflammatory Response in a Model of Intraventricular Hemorrhage of the Preterm Newborn. Front Cell Dev Biol. 2022; 10(8):1–15. doi: 10.3389/fcell.2022.908045.

Chaturvedi S, Ganeshpurkar A, Shrivastava A, Dubey N. Protective effect of co-administration of caffeine and piracetam on scopolamine-induced amnesia in Wistar rats. Curr Res Pharmacol Drug Discov. 2021; 2(4), 100052–100053. doi. 10.1016/j.crphar.2021.100052

Adeoluwa OA, Adeoluwa GO, Obisesan AO, Otomewo LO, Adeniyi FR, Asigo GO, Salawu-Erih T, Efretuei RK, Chinwuba PE, Bakre GA. Anti-inflammatory and Neuroprotective Effects of Lactobacillus Strains Contribute to its Antidepressant-Like Property Against Chronic Unpredictable Stress-Induced Behavioural Abnormalities in Mice. Trop J Nat Prod Res. 2023;7(8):3813–3820. doi: 10.26538/tjnpr/v7i8.36.

Pohanka M. Role of Caffeine in the Age-related Neurodegenerative Diseases: A Review. Mini-Reviews Med Chem. 2022; 22(21):2735–2744. doi: 10.2174/1389557522666220413103529.

Wiprich MT, Altenhofen S, Gusso D, da Rosa Vasques R, Zanandrea R, Kist LW, Bogo MR, Bonan CD. Modulation of adenosine signaling reverses 3-nitropropionic acid-induced bradykinesia and memory impairment in adult zebrafish. Prog Neuro-Psychopharmacology Biol Psychiatry. 2022;119(2022):110602–110614. doi: 10.1016/J.PNPBP.2022.110602.

Martins RS, Rombo DM, Gonçalves-Ribeiro J, Meneses C, Borges-Martins VPP, Ribeiro JA, et al. Caffeine has a dual influence on NMDA receptor–mediated glutamatergic transmission at the hippocampus. Purinergic Signal. 2020; 16(4):503–518. doi: 10.1007/S11302-020-09724-Z/FIGURES/6.

Cornelis MC, Bennett DA, Weintraub S, Schneider JA, Morris MC. Caffeine Consumption and Dementia: Are Lewy Bodies the Link? Ann Neurol. 2022; 91(6):834–847. doi: 10.1002/ANA.26349.

Grunennvaldt RL, Degenhardt-Goldbach J, Brooks P, Tomasi JD, Hansel FA, Tran T, Gomes EN, Deschamps C. Callus culture as a new approach for the production of high added value compounds in ilex paraguariensis: Genotype Infl Uence, medium optimization and compounds Identifi Cation. An Acad Bras Cienc. 2020; 92(3):1–16. doi: 10.1590/0001-3765202020181251.

Daglia M, Racchi M, Papetti A, Lanni C, Govoni S, Gazzani G. In vitro and ex vivo antihydroxyl radical activity of green and roasted coffee. J Agric Food Chem. 2004; 52(6):1700–1704. doi: 10.1021/JF030298N.

Miao M, Cao L, Li R, Fang X, Miao Y. Protective effect of chlorogenic acid on the focal cerebral ischemia reperfusion rat models. Saudi Pharm J. 2017; 25(4):556–563. doi: 10.1016/J.JSPS.2017.04.023.

Sun C, Zhao C, Guven EC, Paoli P, Simal‐Gandara J, Ramkumar KM, Wang S, Buleu F, Pah A, Turi V, Damian G. Dietary polyphenols as antidiabetic agents: Advances and opportunities. Food Front. 2020; 1(1):18–44. doi: 10.1002/fft2.15.

Villarino M, Sandín-España P, Melgarejo P, De Cal A. High chlorogenic and neochlorogenic acid levels in immature peaches reduce monilinia laxa infection by interfering with fungal melanin biosynthesis. J Agric Food Chem. 2011; 59(7):3205–3213.

Tang B, Huang Y, Ma X, Liao X, Wang Q, Xiong X, Li H. Multispectroscopic and docking studies on the binding of chlorogenic acid isomers to human serum albumin: Effects of esteryl position on affinity. Food Chem. 2016; 212(2016):434–442.

Ji ZS, Gao GB, Ma YM, Luo JX, Zhang GW, Yang H, Li N, He QY, Lin HS. Highly bioactive iridium metal-complex alleviates spinal cord injury via ROS scavenging and inflammation reduction. Biomaterials. 2022; 284(2022):121481–121495. doi: 10.1016/J.BIOMATERIALS.2022.121481.

Mubarak A, Swinny EE, Ching SY, Jacob SR, Lacey K, Hodgson JM, Croft KD, Considine MJ. Polyphenol composition of plum selections in relation to total antioxidant capacity. J Agric Food Chem. 2012; 60(41):10256–10262. doi: 10.1021/JF302903K.

Nandini HS, Krishna KL, Apattira C. Combination of Ocimum sanctum extract and Levetiracetam ameliorates cognitive dysfunction and hippocampal architecture in rat model of Alzheimer’s disease. J Chem Neuroanat. 2022; 120(2022): 102069–102076. doi: 10.1016/J.JCHEMNEU.2021.102069.

Chandolia P, Rahi V, Kumar P. Neuroprotective effect of silymarin against 3-Nitropropionic acid-induced neurotoxicity in rats. Curr Res Pharmacol Drug Discov. 2022; 3(2022):100130–100141. doi: 10.1016/J.CRPHAR.2022.100130.

Vannur A, Biradar PR, Patil V. Experimental validation of Vitex negundo leaves hydroalcoholic extract for neuroprotection in haloperidol induced parkinson’s disease in rat. Metab Brain Dis. 2022; 37(2):411–426. doi: 10.1007/S11011-021-00878-2/FIGURES/11.

Zameer S, Najmi AK, Vohora D, Akhtar M. A review on therapeutic potentials of Trigonella foenum graecum (fenugreek) and its chemical constituents in neurological disorders: Complementary roles to its hypolipidemic, hypoglycemic, and antioxidant potential. Nutr Neurosci. 2018; 21(8):539–545. doi: 10.1080/1028415X.2017.1327200.

Honda M, Takezaki D, Tanaka M, Fukaya M. Effect of Roasting Degree on Major Coffee Compounds : A Comparative Study between Coffee Beans with and without Supercritical CO 2 Decaffeination Treatment. 2022; 71(10):1541-1550.

Chowdhury AA, Gawali NB, Bulani VD, Kothavade PS, Mestry SN, Deshpande PS, Juvekar AR. In vitro antiglycating effect and in vivo neuroprotective activity of Trigonelline in d-galactose induced cognitive impairment. Pharmacol. Rep. 2018; 70(2), 372–377. https://doi.org/10.1016/J.PHAREP.2017.09.006.

Chowdhury AA, Gawali NB, Munshi R, Juvekar AR. Trigonelline insulates against oxidative stress, proinflammatory cytokines and restores BDNF levels in lipopolysaccharide induced cognitive impairment in adult mice. Metab Brain Dis. 2018; 33(3):681–691. doi: 10.1007/S11011-017-0147-5.

Khalili M, Alavi M, Esmaeil-Jamaat E, Baluchnejadmojarad T, Roghani M. Trigonelline mitigates lipopolysaccharide-induced learning and memory impairment in the rat due to its anti-oxidative and anti-inflammatory effect. Int Immunopharmacol. 2018; 61(2018):355–362. doi: 10.1016/J.INTIMP.2018.06.019.

Fahanik-Babaei J, Baluchnejadmojarad T, Nikbakht F, Roghani M. Trigonelline protects hippocampus against intracerebral Aβ(1-40) as a model of Alzheimer’s disease in the rat: insights into underlying mechanisms. Metab Brain Dis. 2019; 34(1):191–201. doi: 10.1007/S11011-018-0338-8.

Nakhate KT, Bharne AP, Verma VS, Aru DN, Kokare DM. Plumbagin ameliorates memory dysfunction in streptozotocin induced Alzheimer’s disease via activation of Nrf2/ARE pathway and inhibition of β-secretase. Biomed Pharmacother. 2018; 101(2018):379–390. doi: 10.1016/J.BIOPHA.2018.02.052.

Khan H, Grewal AK, kumar M, Singh TG. Pharmacological Postconditioning by Protocatechuic Acid Attenuates Brain Injury in Ischemia-Reperfusion (I/R) Mice Model: Implications of Nuclear Factor Erythroid-2-Related Factor Pathway. Neuroscience. 2022; 491(2022):23–31.

Varshney V, & Garabadu D. Ang(1-7) exerts Nrf2-mediated neuroprotection against amyloid beta-induced cognitive deficits in rodents. Mol. Biol. Rep. 2021; 48(5), 4319–4331. doi. 10.1007/S11033-021-06447-1.

Antonietti S, Silva AM, Simões C, Almeida D, Félix LM, Papetti A, Nunes FM. Chemical Composition and Potential Biological Activity of Melanoidins From Instant Soluble Coffee and Instant Soluble Barley: A Comparative Study. Front Nutr. 2022; 9(2022):825584–825611. doi: 10.3389/FNUT.2022.825584.

Silva PM, Prieto C, Andrade CCP, Lagarón JM, Pastrana LM, Coimbra MA, Vicente AA, Cerqueira MA. Hydroxypropyl methylcellulose-based micro- and nanostructures for encapsulation of melanoidins: Effect of electrohydrodynamic processing variables on morphological and physicochemical properties. Int J Biol Macromol. 2022; 202(2022):453–467. doi: 10.1016/J.IJBIOMAC.2022.01.019.

Yang S, Fan W, Xu Y. Melanoidins present in traditional fermented foods and beverages. Compr Rev Food Sci Food Saf. 2022; 21(5):4164–4188. doi: 10.1111/1541-4337.13022.

Moreira ASP, Nunes FM, Domingues MR, Coimbra MA. Coffee melanoidins: structures, mechanisms of formation and potential health impacts. Food Funct. 2012; 3(9):903–915. doi: 10.1039/C2FO30048F.

Argirova MD. Photosensitizer activity of model melanoidins. J Agric Food Chem. 2005; 53(4):1210–1214. doi: 10.1021/JF049270H/ASSET/IMAGES/LARGE/JF049270HF00006.JPEG.

Kim MJ, Kwak HS, Kim SS. Effects of salinity on bacterial communities, Maillard reactions, isoflavone composition, antioxidation and antiproliferation in Korean fermented soybean paste (doenjang). Food Chem. 2018; 245(2018):402–409. doi: 10.1016/J.FOODCHEM.2017.10.116.

Quiroz-Reyes CN, Fogliano V. Design cocoa processing towards healthy cocoa products: The role of phenolics and melanoidins. J Funct Foods. 2018; 45(2018):480–490. doi: 10.1016/J.JFF.2018.04.031.

Hu GL, Wang X, Zhang L, Qiu MH. The sources and mechanisms of bioactive ingredients in coffee. Food Funct. 2019; 10(6):3113–3126. doi: 10.1039/C9FO00288J.

Sauer T, Pischetsrieder M, Muench G. P1-169: Roasting products of coffee (melanoidins) and their associations with Alzheimer’s disease. Alzheimer Dement. 2010; 6(4S_Part_7):S223–S223. doi: 10.1016/J.JALZ.2010.05.719.

Somoza V. Five years of research on health risks and benefits of Maillard reaction products: An update. Mol Nutr Food Res. 2005; 49(7):663–72. doi: 10.1002/MNFR.200500034.

Awwad S, Issa R, Alnsour L, Albals D, Al-Momani I. Quantification of caffeine and chlorogenic acid in green and roasted coffee samples using hplc-dad and evaluation of the effect of degree of roasting on their levels. Molecules. 2021; 26(24):26247502–26247511. doi: 10.3390/molecules26247502.

Xu Y, Ning Y, Zhao Y, Peng Y, Luo F, Zhou Y, Li P. Caffeine Functions by Inhibiting Dorsal and Ventral Hippocampal Adenosine 2A Receptors to Modulate Memory and Anxiety, Respectively. Front Pharmacol. 2022; 13(2):1–11. doi: 10.3389/fphar.2022.807330.

Rasidah R, Suryawati S, Munira M, Zakiah N, Rahayu S, Aulianshah V. Antibacterial Activity, TLC-Bioautography Analysis, and Determination of Bioactive Components in Ethyl Acetate Extract of Robusta Coffee Leaf (Coffea canephora L.) From Aceh, Indonesia. Trop J Nat Prod Res. 2023; 7(4): 2760–2764.



How to Cite

Ahmad, N., Lesa, K. N., Fakhrudin, N., & Ikawati, Z. (2023). Potentiality of Coffee (Coffea robusta) and its Bioactive Compounds in Memory Function: A Review: http://www.doi.org/10.26538/tjnpr/v7i11.1. Tropical Journal of Natural Product Research (TJNPR), 7(11), 5015–5025. Retrieved from https://tjnpr.org/index.php/home/article/view/2997