Pharmacological Potential of Andrographis paniculata (Burm. f.) Nees in Preventing Atherosclerosis: A Review doi.org/10.26538/tjnpr/v5i11.3
Main Article Content
Abstract
Andrographis paniculata (Burm. f) Nees (AP) is a medicinal plant often found in Southeast Asian countries such as Indonesia, Malaysia, the Philippines, and China. AP has been used traditionally for increasing appetite, curing dysentery, fever, tuberculosis infection, cough, and runny nose. The aim of this article was to explore the potential of AP and its pharmacological effects in the prevention of atherosclerosis. Scientific data were gathered from articles published in the last 10 years in PubMed, Science Direct, Scopus, Web of Science, and Google. The inclusion criteria comprised journal articles describing the effects of AP, their equivalents, and derivatives on metabolic syndrome dyslipidemia, atherosclerosis, and other disorders. According to the findings of the literature research, AP contains diterpene lactones like andrographolide (Andro). The major active compounds in this plant are the Andro and analogues. These compounds are responsible for AP's pharmacological effects, one of which is anti-dyslipidemia. It is known that there is a positive correlation between anti-dyslipidemia and anti-atherosclerosis activity. Andro and its derivatives have a wide range of pharmacological actions, including anti-dyslipidemia and antioxidant activity, as well as other pharmacological properties such as anti-inflammatory activity. The review is supported by research from in vitro, in vivo, to clinical trials in humans. As a result of these properties, AP has a strong potential to prevent atherosclerosis.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Kumar S, Singh B, Bajpai V. Andrographis paniculata (Burm.f.) Nees: Traditional uses, phytochemistry, pharmacological properties and quality control/quality assurance. J Ethnopharmacol. 2021; 15(275):114054.
Polash S, Saha T, Hossain M, Sarker S. Investigation of the Phytochemicals, Antioxidant, and Antimicrobial Activity of the Andrographis paniculata Leaf and Stem Extracts. Adv Biosci Biotechnol. 2017; 8(5):149-162.
Akhtar MT, Bin Mohd Sarib MS, Ismail IS, Abas F, Ismail A, Lajis NH, Shaari K. Anti-Diabetic Activity and Metabolic Changes Induced by Andrographis paniculata Plant Extract in Obese Diabetic Rats. Molecules. 2016; 9(8):1026.
Komalasari T and Harimurti S. A Review of The Anti-diabetic Activity of Andrographis paniculata (Burm. f.) Nees based invivo Study. Int J Public Health Sci. 2015; 4(4):256-263.
Wediasari F, Nugroho GA, Fadhilah Z, Elya B, Setiawan H, Mozef T. Hypoglycemic Effect of a Combined Andrographis paniculata and Caesalpinia sappan Extract in Streptozocin-Induced Diabetic Rats. Adv Pharmacol Sci. 2020; 2020(12):1-9.
Alias N, Leow TC, Ali MSM, Tajudin AA, Salleh AB, Rahman ANZRA. Anti-obesity potential of selected tropical plants via pancreatic lipase inhibition. Adv Obes Weight Manag Contr. 2017; 6(4):122131.
Wu T, Peng Y, Yan S, Li N, Chen Y, Lan T. Andrographolide Ameliorates Atherosclerosis by Suppressing Pro-Inflammation and ROS Generation-Mediated Foam Cell Formation. Inflamm. 2018; 41(5):1681-1689.
Rajaratinam H and Nafi SNM. Andrographolide is an Alternative Treatment to Overcome Resistance in ER-Positive Breast Cancer via Cholesterol Biosynthesis Pathway. Malays J Med Sci. 2019; 26(5):6-20.
Burgos RA, Alarcón P, Quiroga J, Manosalva C, Hancke J. Andrographolide, an Anti-Inflammatory Multitarget Drug: All Roads Lead to Cellular Metabolism. Mol. 2021; 26(5):1-7.
Hossain S, Urbi Z, Karuniawati H, Mohiuddin RB, Moh Qrimida
A, Allzrag AMM, Ming LC, Pagano E, Capasso R. Andrographis paniculata (Burm. f.) Wall. ex Nees: An Updated Review of Phytochemistry, Antimicrobial Pharmacology, and Clinical Safety and Efficacy. Life. 2021; 11(348):1-32.
Zhanga L, Baoa M, Zhaoa BLH, Zhanga Y, Jib XY, Zhang NZC,Yi XHJ, Tan Y, Li L, Lu C. Effect of Andrographolide and Its Analogs on Bacterial Infection: A Review. Pharmacol. 2020; 105:123-134.
Mardiana RN and Handayani N. Antibacterial activity of the sambiloto leaf extracts (Andrographis paniculata) to Bacillus cereus and Pseudomonas aeruginosa. Biofarmasi. 2016; 14(1):19-24.
Lin CF, Chang YH, Chien SC, Lin YH. Epidemiology of dyslipidemia in Asia Pacific region. Int J Gerontol. 2018; 12(1):2-6.
Jacobson TA, Ito MK, Maki KC, Orringer CE, Bays HE, Jones PH, McKenney JM, Grundy SM, Gill EA, Wild RA, Wilson DP, Brown WV. National Lipid Association (NLA) recommendation for patient-centered management of dyslipidemia: part 1 (full report). J Clin Lipidol. 2015; 9(6S):129-169.
Kopaei MR, Setorki M, Doudi M, Baradaran A, Nasri H. Atherosclerosis: Process, Indicators, Risk Factors and New Hopes. Int J Prev Med. 2014; 5(8):927-946.
Hasimun P, Sukandar EY, Adnyana IK, Tjahjono DH. A simple method for screening antihyperlipidemic agents. Int J Pharmacol.
; 7(1):74-78.
Hsieh CY, Hsu MJ, Hsiao G, Wang YH, Huang CW, Chen SW, Jayakumar T, Chiu PT, Chiu YH, Sheu JH. Andrographolide Enhances Nuclear Factor-kB Subunit p65 Ser536 Dephosphorylation through Activation of Protein Phosphatase 2A in Vascular Smooth Muscle Cells. Int J Biol Chem. 2011; 286(8):5942-5955.
Lu WJ, Lee JJ, Chou DS, Jayakumar T, Fong TH, Hsiao G, Sheu JR, A novel role of andrographolide, an NF-kappa B inhibitor, on inhibition of platelet activation: the pivotal mechanisms of endothelial nitric oxide synthase/cyclic GMP. J Mol Med. 2011;
(12):1261-1273.
Chao CY, Lii CK, Tsai IT, Li CC, Liu KL, Tsai CW, Chen HW, Andrographolide Inhibits ICAM-1 Expression and NF-κB Activation in TNF-α-Treated EA.hy926 Cells. J Agric Food Chem. 2011; 59(10):5263-271.
Nugroho AE, Andrie M, Warditiani NK, Siswanto E, Pramono S, Lukitaningsih E. Antidiabetic and antihiperlipidemic effect of Andrographis paniculata (Burm. f.) Nees and andrographolide in
high-fructose-fat-fed rats. Indian J Pharmacol. 2012; 44(3):377-
Pandetia S, Sonkarb R, Shuklaa A, Bhatiab G, Tadigoppula N. Synthesis of new andrographolide derivatives and evaluation of their antidyslipidemic, LDL-oxidation and antioxidant activity. Eur J Med Chem. 2013; 69(15):439-448.
Chen YY, Hsu MJ, Sheu JR, Lee LW, Hsieh CY. Andrographolide, a Novel NF-????B Inhibitor, Induces Vascular Smooth Muscle Cell Apoptosis via a Ceramide-p47phox-ROS Signaling Cascade. Evid-Based Compl Altern. Med. 2013; 2013(3):1-10.
Lakshmia V, Srivastav S, Khanna AK, Mahdi AA, Agarwal AS. Lipid Lowering potential of Andrographis paniculata (Nees). Phytopharm. 2014; 3(2):124-129.
Ding L, Li J, Song B, Xiao X, Huang W, Zhang B, Tang X, Qi M, Yang Q, Yang Q, Yang L, Wang Z. Andrographolide Prevents High-Fat Diet–Induced Obesityin C57BL/6 Mice by Suppressing the Sterol RegulatoryElement-Binding Protein Pathway. J Pharmacol Exp Ther. 2014; 351(2):474-483.
Chang CC, Duann YF, Yen TL, Chen YY, Jayakumar T, Ong
ET, Sheu JR. Andrographolide, a Novel NF-kB Inhibitor,
Inhibits Vascular Smooth Muscle Cell Proliferation and Cerebral
Endothelial Cell Inflammation. Acta Cardiol Sin. 2014;
(4):308-315.
Batran RA, Bayaty FA, Jamil MM, Obaidi A, Hussain SF, Mulok TZ. Evaluation of the Effect of Andrographolide on Atherosclerotic Rabbits Induced by Porphyromonas gingivalis. Biomed Res Int. 2014; 2014(08):1-11.
Batran RA, Bayaty FA, Mazen M. Obaidi JA, Ashrafi A. Insights into the antiatherogenic molecular mechanisms of andrographolide against Porphyromonas gingivalis-induced atherosclerosis in rabbits. Naunyn-Schmiedeberg's Arch Pharmacol. 2014; 387(12):1141-1152.
Dewi BDN, Theodora I, Tamayanti WD, Pramono A. Effect of Andrographis Paniculata to the Expression, of IL-6, IL-17, IL-10, TGFβ, and the Ratio of Treg/Th17 in Sprague Dawley Rats with
Atherosclerosis Diet and Cigarette Smoke. Int J Sci Res. 2014; 5(2):100-107.
Phunikhom K, Khampitak K, Aromdee C, Arkaravichien T, Sattayasai J. Effect of Andrographis paniculata Extract on Triglyceride Levels of the Patients with Hypertriglyceridemia: A Randomized Controlled Trial. J Med Assoc Thai. 2015;
(6):S41-S47.
Warditiani NK, Susanti NMP, Arisanti CIS, Putri NPRD, Wirasuta IMAG. Antidyslipidemia and Antioxidant Activity of Andrographolide Compound from Sambiloto (Andrographis paniculata) Herb. Int J Pharm Pharm Sci. 2016; 9(7):59-65.
Li Y, He S, Tang J, Ding N, Chu X, Cheng L, Ding X, Liang T, Feng S, Rahman SU, Wang X, Wu J. Andrographolide Inhibits Inflammatory Cytokines Secretion in LPS-Stimulated RAW264.7 Cells through Suppression of NF-????B/MAPK Signaling Pathway. Evid-Based Compl Altern Med. 2017; 2017(06):1-9.
Wu T, Chen X, Wang Y, Xiao H, Peng Y, Lin L, Xia W, Long M, Tao J, Shuai X. Aortic plaque-targeted andrographolide delivery with oxidation-sensitive micelle effectively treats atherosclerosis via simultaneous ROS capture and antiinflammation. Nanomed. 218: 14(7):2215-2226.
Hamidy MY, Oenzil F, Yanwirasti, Aldi Y. Effect of Andrographolide on Monocyte Chemoattractant Protein-1 Expression at the Initiation Stage of Atherosclerosis in Atherogenic Diet-Fed Rats. Biomed Pharmacol J. 2019; 12(3):1167-1173.
Warditiani NK, Sari PMNA, Ramona Y, Wirasuta IMAG. Molecular Pharmacology Study of Andrographolide Extracted from Andrographis paniculata on Atherosclerosis Preventive Effect. Sys Rev Pharm. 2020; 11(9):201-206.
Liu YT, Chen HW, Lii CK, Jhuang JH, Huang CS, Mei-Ling L, Yao HT. A Diterpenoid, 14-Deoxy-11,12-Didehydroandrographolide, in Andrographis paniculata Reduces Steatohepatitis and Liver Injury in Mice Fed a High-Fat and High-Cholesterol Diet. Nutr 2020; 12(2):523-539.
Shu J, Huang R, Tian Y, Liu Y, Zhu R, Shi G. Andrographolide protects against endothelial dysfunction and inflammatory response in rats with coronary heart disease by regulating PPAR
and NF-κB signaling pathways. Ann Palliat Med. 2020; 9(4):1965-1975.
Tan MCS, Oyong GG, Shen CC, Ragasa CY. Chemical Composition of Andrographis paniculata (Burm.f.) Nees. Int. J. Pharmacogn. Phytochem Res. 2016; 7(6):2405-2408.
Fardiyah Q, Ersam T, Suyanta, Slamet A, Suprapto, Kurniawan F. New potential and characterization of Andrographis paniculata L. Nees plant extracts as photoprotective agent. Arab J Chem. 2020; 13(11):8888-8897.
Dai Y, Chen SR, Chai L, Zhao J, Wang Y, Wang Y. Overview of pharmacological activities of Andrographis paniculata and its major compound andrographolide. Crit Rev Food Sci Nutr. 2019; 59(sup1):S17-S29.
Barbieri SS, Cavalca V, Eligini S, Brambilla M, Caiani A,
Tremoli E, Colli S. Apocynin prevents cyclooxygenase 2
expression in human monocytes through NADPH oxidase and
glutathione redox-dependent mechanisms. Free Radic Biol Med.
; 37(2):156-165.
Mitra S, Goyal T, Mehta JL. Oxidized LDL, LOX-1 and atherosclerosis. Cardiovasc. Drugs Ther. 2011; 25(5):419-429.
Leiva E, Wehinger S, Guzmán L, Orrego R. Role of Oxidized LDL in Atherosclerosis: Hypercholesterolemia. Kumar. IntechOpen Limited, London: 2015; 55-77p.
Chen Y, Duan Y, Yang X, Sun L, Liu M, Wang Q, Ma X, Zhang W, Li W, Hu W, Miao RQ, Xiang R, Hajjar DP, Han J. Inhibition of ERK1/2 and activation of LXR synergistically reduce atherosclerotic lesions in ApoE-deficient mice. Arterioscl Thromb Vasc Biol. 2015; 35(4):948-959.
Okhuarobo A, Falodun JE, Erharuyi O, Imieje V, Falodun A, Langer P. Harnessing the medicinal properties of Andrographis
paniculata for diseases and beyond: a review of its phytochemistry and pharmacology. Asian Pac J Trop Dis. 2014; 4(3):213-222.
Al Batran R, Al-Bayaty F, Al-Obaidi MM, Abdulla MA. Acute toxicity and the effect of andrographolide on Porphyromonas gingivalis-induced hyperlipidemia in rats. Biomed Res Int. 2013;
(6):1-7.