Microbial Diseases Associated with Consumption of Contaminated Tomatoes and Bell Peppers doi.org/10.26538/tjnpr/v5i11.1
Main Article Content
Abstract
Tomatoes (Lycopersicon esculentum) and bell peppers (Capsicum annum) are two fruits and vegetables that feature widely in the human diet. They are prone to microbial contamination, and spoilage. Bacteria and fungi contamination may go undetected by the food handler or consumer. As such, consumers are at risk of varying disease conditions when these organisms are ingested. Literature has shown certain human pathogens as culprits of fruit spoilage. Known contaminants of these fruits include the genera of Aspergillus, Salmonella, and Escherichia while Citrobacter, Proteus mirabilis and Pantoea agglomerans are reportedly lesser-known contaminants. Diseases resulting from their ingestion could be gastroenteritis, salmonellosis, oesophageal candiditis, haemorrhagic colitis, and mycotoxicosis. This review aimed to highlight the possible infections that could arise from consumption of contaminated tomatoes and bell peppers. A web search was done to determine the human pathogens doubling as spoilage organisms of tomatoes and bell peppers. Elsevier, Pubmed, and other databases were searched using ‘food infection, tomatoes, bell peppers, humans, bacteria, and fungi’. Each selected organism was briefly discussed detailing the infections caused, symptoms, treatment, and epidemiology. Some infections discussed are more common than others, but it is confirmed that tomatoes and peppers can be vehicles of human pathogens associated with infections. More research is required to ascertain the prevalence of these organisms in locally and industrially processed tomato and bell pepper foods and products consumed in Nigeria. Further epidemiological studies are also recommended to determine the disease burden on the populace.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Ajayi AA and Olaseinde IG. Studies on the pH and protein content of tomato (Lycopersicon esculentum Mill) fruits deteriorated by Aspergillus niger. Sci Res Essays 2009; 4(3):185-187.
Hill A. Healthline: Is a tomato a fruit or a vegetable? [Online] 2018 [Cited 2020 April] Available from: https://www.healthline.com/nutrition/is-tomato-a-fruit
Borisade OA, Uwaidem YI, Salami AE. Preliminary Report on Fusarium oxysporum f. sp. lycopersici (Sensu lato) from some tomato producing agroecological areas in southwestern Nigeria and susceptibility of F1-Resistant tomato hybrid (F1-Lindo) to infection. Annu Res Rev Biol. 2017; 18(2):1-9
Ghosh A. Identification of microorganisms responsible for spoilage of tomato (Lycopersicon esculentum) fruit. J
Phytol. 2009; 1(6):414416
Kalyoncu F, Tamer AÜ, Oskay M. Determination of fungi associated with tomatoes (Lycopersicum esculentum M.) and tomato pastes. Plant Pathol. 2005; 4:146-149.
Obunukwu GM, Dike KS, Nwakasi GE. Isolation and identification of microbial deteriogens of fresh tomatoes
stored at ambient temperature. Microbiol Res J Int. 2018; 26(1):1-8
Passam H, Karapanos L, Bebeli P, Savvas D. A review of recent research on tomato nutrition, breeding and post-harvest technology with reference to fruit quality. Eur J Plant Sci Biotechnol. 2007; 1(1):1-21
Devadas SM, Giffen SR, Kumar N, Lobe R, Ballal M. Activity of Solanum lycopersicum against Candida species
isolated from retro-positive patients–an in vitro study. J Pharm Sci Res. 2017; 9(7):1233-1236
Kelaniyangoda DB, Salgadoe SA, Jayasekera SJ, Gunarathna RM. Wilting of bell pepper (Capsicum annuum L.) causal organism isolation and a successful control approach. Asian J Plant Pathol. 2011; 5:155-162.
Nadeem M, Anjum F, Khan M, Saeed M, Riaz A. (2013). Antioxidant potential of bell pepper (Capsicum annum L.)- A review. Pak J Food Sci. 2013; 21(1-4):45-51
Arnarson A. Healthline: bell peppers 101: nutrition facts and health benefits. (online) 2019 (Cited 2020 April). Available from: https://www.healthline.com/nutrition/foods/bell-peppers
Ademoh OF, Afolabi AM, Orisasona BA, Olowolaju ED. Isolation and identification of rot fungi on post-harvest of pepper (Capsicum annuum L.) fruits. AASCIT J Biol. 2018;3(5):24-29.
Machado‐Moreira B, Richards K, Brennan F, Abram F, Burgess CM. Microbial contamination of fresh produce: what, where, and how? Compr Rev Food Sci Food Saf. 2019; 18(6):1727-1750.
Ganeshan S, Neetoo H. Pre-harvest microbial contamination of tomato and pepper plants: understanding the pre-harvest contamination pathways of mature tomato and bell pepper plants using bacterial pathogen surrogates. Adv Crop Sci Technol. 2015; 4(1):204:1-8
Obeng FA, Gyasi PB, Olu-Taiwo M, Ayeh-Kumi FP. Microbial assessment of tomatoes (Lycopersicon esculentum)
sold at some central markets in Ghana. BioMed Res Int. 2018; 2018 Article ID 6743826, 7 pages.
Okigbo RN and Anene CM. Prevalence of aflatoxin in dried okra (Abelmoschus esculentus) and tomatoes (Lycoperisicon esculentum) commercialized in Ibadan metropolis. Integr Food Nutr Metab. 2017; 5(1):1-4.
Wogu MD and Ofuase O. Microorganisms responsible for the spoilage of tomato fruits, Lycopersicum esculentum, sold in markets in Benin City, southern Nigeria. Scholars Acad J Biosci. 2014; 2(7):459-466.
Soto-Beltran M, Campo NC, Campos-Sauceda J, AvenaBustillos R, Cháidez C. Prevalence of Salmonella,
Escherichia coli and coliforms on bell peppers from the field to the packing house process. Afr J Microbiol Res. 2015; 9(10):718-724.
Deering AJ, Jack DR, Pruitt RE, Mauer LJ. Movement of Salmonella serovar typhimurium and E. coli O157:H7 to ripe tomato fruit following various routes of contamination. Microorg. 2015; 3(4):809–825.
Carmo LS, Dias RS, Linardi VR, Sena MJ, Santos DA. An outbreak of staphylococcal food poisoning in the municipality of Passos, MG, Brazil. Braz Arch Biol Technol. 2003; 46:581-586.
Ugwu CO, Chukwuezi FO, Ozougwu VE. Microbial agents of tomato spoilage in Onitsha metropolis. Adv Biol Res. 2014; 8(2):87-93
Onourah S and Orji M. Fungi associated with the spoilage of post-harvest tomato fruits sold in major markets in Awka, Nigeria. Univers J Microbiol Res. 2015; 3(2):11-16.
Harding MW, Butler N, Dmytriw W, Rajput S, Burke DA, Howard RJ. Characterization of microorganisms from fresh produce in Alberta, Canada reveals novel food-spoilage fungi. Res J Microbiol. 2017; 12:20-32.
Puran M, Bridgemohan R, Mohammed Z. Hot pepper viii. reduction of microbial spoilage and physio-chemical
deterioration in processed Caribbean peppers. J Food Res. 2019; 8(2):32-41
Akinyemi BK and Liamngee K. Isolation and identification of fungi causing decay in pepper (Capsicum spp) from selected markets in Makurdi. Asian J Res Crop Sci. 2018; 1(2):1-6.
Frimpong GK, Adekunle AA, Ogundipe OT, Solanki MK, Sadhasivam S, Sionov E. Identification and toxigenic
potential of fungi isolated from Capsicum peppers. Microorg. 2019; 7(9):303.
Negbenebor HE and Mairami FM. Prevalence of bacterial loads on some fruits and vegetables sold in Kaduna central market, northwestern Nigeria. J Appl Sci. 2019; 19:20-24.
Al-Mijalli SH. Isolation and characterization of plant and human pathogenic bacteria from green pepper (Capsicum annum L.) in Riyadh, Saudi Arabia. Biotech. 2014; 4(4):337-344.
Guchi B and Ashenafi M. Microbial load, prevalence and antibiograms of Salmonella and Shigella in lettuce and green peppers. Ethiop J Health Sci. 2010; 20(1):41-48.
Mohamed AA, Lu X, Mounmin FA. Diagnosis and treatment of esophageal Candidiasis: current updates. Can J
Gastroenterol Hepatol. 2019; 3585136:1-7.
Hoversten P, Otaki F, Katzka D. Candida esophagitis: epidemiology, risk factors and outcomes. Am J Gastroenterol. 2017; 112:S186-S187.
Klotz SA. Oropharyngeal candidiasis: a new treatment option. The University of Chicago Press, Chicago, IL, USA. 2006; 42(8):1187-1188.
Takahashi Y, Nagata N, Shimbo T, Nishijima T, Watanabe K, Aoki T, Sekine K, Okubo H, Watanabe K, Sakurai T, Yokoi C, Kobayakawa M, Yazaki H, Teruya K, Gatanaga H, Kikuchi Y, Mine S, Igari T, Takahashi Y, Mimori A, Oka S,
Akiyama J, Uemura N. Long-term trends in esophageal candidiasis prevalence and associated risk factors with or
without HIV infection: lessons from an endoscopic study of 80,219 patients. PloS one, 2015; 10(7):e0133589.
Okereke Y, Mansoor E, Cooper G. The epidemiology of esophageal Candidiasis in the United States from 2012 to 2017: results from the explorys database. Am J Gastroenterol. 2018; 113:S187-S188
Mahato DK, Lee KE, Kamle M, Devi S, Dewangan KN, Kumar P, Kang SG. Aflatoxins in food and feed: an overview on prevalence, detection and control strategies. Front Microbiol. 2019; 10:2266.
Kazan E, Maertens J, Herbrecht R, Weisser M, Gachot B, Vekhoff A, Caillot D, Raffoux E, Fagot T, Reman O, Isnard F, Thiebaut A, Bretagne S, Cordonnier C. A retrospective series of gut aspergillosis in haematology patients. Clin Microbiol Infect. 2011; 17(4):588-594.
WHO. Mycotoxins: children's health and the environment. 2011 https://www.who.int/ceh/capacity/mycotoxins.pdf?ua=1
Muhammad S, Shehu K, Amusa NA. Survey of the market diseases and aflatoxin contamination of tomato (Lycopersicon esculentum MILL) fruits in Sokoto, northwestern Nigeria. Nutr Food Sci. 2004; 34(2):72-76
Suleiman MS, Nuntah LC, Muhammad HL, Mailafiya SC, Makun HA, et al. Fungi and aflatoxin occurrence in fresh and dried vegetables marketed in Minna, Niger State, Nigeria. J Plant Biochem Physiol. 2017; 5(176):1-4
Mariutti LR and Soares LM. Survey of aflatoxins in tomato products. Ciênc. Tecnol. Aliment., 2009; 9(2):431-434.
Mwanda OW, Otieno CF, Omonge E. Acute aflatoxicosis: case report. East Afr Med J. 2005; 82(6):320‐324.
Cinar A and Onbasi E. Mycotoxins: The hidden danger in foods. IntechOpen 2019. 1-13 p.
Costa J, Rodríguez R, Garcia-Cela E, Medina A, Magan N, Lima N, Battilani, P, Santos C. Overview of fungi and
mycotoxin contamination in Capsicum pepper and in its derivatives. Toxins, 2019; 11(1):27.
Barcus AL, Burdette SD, Herchline TE. Intestinal invasion and disseminated disease associated with Penicillium
chrysogenum. Ann Clin Microb. 2005; 4(21):1-4.
Harwig J, Scott P, Stoltz D, Blanchfield B. Toxins of molds from decaying tomato fruit. Appl Environ Microbiol. 1979, 38(2):267-274
Jain PK, Gupta VK, Misra AK, Gaur R, Bajpai V, Issar S. Current status of Fusarium infection in human and
animal. Asian J Anim Vet Adv. 2011; 6:201-227.
Wang ZG, Feng JN, Tong Z. Human toxicosis caused by moldy rice contaminated with fusarium and T-2 toxin.
Biomed. Environ Sci. 1993; 6(1):65-70.
Nucci M and Anaissie E. Fusarium infections in immunocompromised patients. Clin Microbiol Rev. 2007;
(4):695-704.
Nelson PE, Dignani MC, Anaissie EJ. Taxonomy, biology, and clinical aspects of Fusarium species. Clin Microbiol Rev. 1994; 7(4):479-504.
Ribes JA, Vanover-Sams CL, Baker DJ. Zygomycetes in human disease. Clin Microbiol Rev. 2000; 13(2): 236-301.
Benedict K, Chiller TM, Mody RK. Invasive fungal infections acquired from contaminated food or nutritional supplements: a review of the literature. Foodborne Pathog Dis. 2016; 13(7):343-349.
Cheng VC, Chan JF, Ngan AH, To KK, Leung SY, Tsoi HW, Yam WC, Tai WM, Wong SY, Tse H, Li WS, Lau KP, Woo
CY, Leung YH, Lie KW, Liang HS, Que TL, Ho PL, Yuen KY. Outbreak of intestinal infection due to Rhizopus microsporus. J Clin Microbiol. 2009; 47(9):2834-2843
Neelaveni V, Tupaki-Sreepurna A, Thanneru V, Kindo AJ. Lichtheimia ramosa isolated from a young patient from an infected wound after a road traffic accident. J Acad Clin Microbiol. 2017;19:59-61.
Choi WT, Chang TT, Gill RM. Gastrointestinal zygomycosis masquerading as acute appendicitis. Case Rep Gastroenterol. 2016; 10(1):81-87.
Santos GG, Mattos LM, Moretti CL. Quality and occurrence of mycotoxins in tomato products in the Brazilian market. Enz Eng. 2016; 5(3):1-7.
Hesseling PB. Onyalai. Baillieres Clin Haematol. 1992; 5(2):457-473.
Lee HB, Patriarca A, Magan N. Alternaria in food: ecophysiology, mycotoxin production and toxicology. Mycobiol. 2015; 43(2):93-106.
Sanzani MS, Gallone T, Garganese F, Caruso GA, Amenduni M, Ippolito A. Contamination of fresh and dried tomato by alternaria toxins in southern Italy, Food Addit Contam. Part A. 2019; 36(5):789-799.
Bakker E. Geotrichum and yeast infection: are they connected? (Online) 2016 (Cited 2020 April. Available from:
https://www.yeastinfection.org/geotrichum-and-yeast-infection-are-they-connected/
Bonifaz A, Vázquez-González D, Macías B, Paredes-Farrera F, Hernández MA, Araiza J, Ponce RM. Oral geotrichosis: report of 12 cases. J Oral Sci. 2010; 52(3):477-483.
Pal M, Sejra S, Sejra A, Tesfaye S. Geotrichosis -an opportunistic mycosis of humans and animals. Int J Livest
Res. 2013; 3(2): 38-44.
Keene S, Sarao M, McDonald P, Veltman J. Cutaneous geotrichosis due to Geotrichum candidum in a burn patient. Access Microbiol. 2019; 1(1):e000001.
Sfakianakis A, Krasagakis K, Stefanidou M, Maraki S, Koutsopoulos A, Kofteridis D, Samonis G, Tosca A. Invasive
cutaneous infection with Geotrichum candidum– sequential treatment with amphotericin B and voriconazole. Med Mycol 2007; 45:81–84.
Amft N, Miadonna A, Viviani MA, Tedeschi A. Disseminated Geotrichum capitanum infection with predominant liver involvement in a patient with non-Hodgkin’s lymphoma. Haematol. 1996; 81(4):352-355
Cerna-Cortes JF, Gómez-Aldapa CA, Rangel-Vargas E, Torres-Vitela M, Villarruel-López, A, Castro-Rosas, J.
Presence of some indicator bacteria and diarrheagenic E. coli pathotypes on jalapeño and serrano peppers from popular markets in Pachuca City, Mexico. Food Microbiol. 2012; 32(2):444-447.
Yates A. Shiga toxin-producing E. coli (STEC). In: Craig, D. and Bartholomaeus, A. (eds). Agents of foodborne illness. Canberra: Food Standards Australia New Zealand. 2011. 41-48 p.
Omolehin RA, Erbaugh JM, Miller SA, LeJeune JT. Contamination of tomatoes with coliforms and Escherichia
coli on farms and in markets of northwest Nigeria. J Food Prot. 2015; 78(1):57-64.
Al-Kharousi ZS, Guizani N, Al-Sadi AM, Al-Bulushi IM, Shaharoona B. Hiding in fresh fruits and vegetables:
opportunistic pathogens may cross geographical barries. Int J Microbiol. 2016; 4292417:1-14.
Khalil IA, Troeger C, Blacker BF, Rao PC, Brown A, Atherly DE, Brewer TG, Engmann CM, Houpt ER, Kang G, Kotloff KL, Levine MM, Luby SP, MacLennan CA, Pan WK, Pavlinac PB, Platts-Mills JA, Qadri F, Riddle MS, Ryan ET,
Shoultz DA, Steele AD, Walson JL, Sanders JW, Mokdad AH, Murray JL, Hay SI, Reiner RC. Morbidity and mortality
due to shigella and enterotoxigenic Escherichia coli diarrhoea: the global burden of disease study 1990–2016,
Lancet Infect Dis. 2018; 18(11): 1229-1240.
Yates A. Salmonella (non-typhoidal). In: Craig, D. and Bartholomaeus, A. (eds) Agents of foodborne illness.
Canberra: Food Standards Australia New Zealand 2011. 31-40 p.
Whitworth J. Salmonella outbreak was first linked to tomatoes in Sweden. 2019 Nov 27 [cited 2020 Dec 13] in: Food Safety News- Breaking News for Everyone’s Consumption [internet]. Available from: https://www.foodsafetynews.com/2019/11/salmonellaoutbreak-was-first-linked-to-tomatoes-in-sweden/
Kozak GK, MacDonald D, Landry L, Farber JM. Foodborne outbreaks in Canada linked to produce: 2001 through 2009. J Food Prot. 2013; 76(1):173-183.
Ford L, Moffatt C, Fearnley E, Miller M, Gregory J, SloanGardner T, Polkinghorne B, Bell R, Franklin N, Williamson D, Glass K, Kirk M. The epidemiology of Salmonella enterica outbreaks in Australia, 2001–2016. Front Sustain Food Syst. 2016; 2(86):1-8
Olalekan A, Oluwaseun F, Oladele H. Prevalence and knowledge of Salmonella infections among food handlers:
implications for school health in Southwestern Nigeria. Sahel Med J. 2018; 21(2):99-103.
Bai L, Xia S, Lan R, Liu L, Ye C, Wang Y, Jin D, Cui Z, Jing H, Xiong Y, Bai X, Sun H, Zhang J, Wang L, Xu J. Isolation
and characterization of cytotoxic, aggregative Citrobacter freundii. PLoS One 2012; 7(3):e33054.
Abu-Ghazaleh BM. Inhibition of Citrobacter freundii by lactic acid, ascorbic acid, citric acid, Thymus vulgaris extract and NaCl at 31°C and 5°C. Ann Microbiol. 2006; 56(3):261-267.
Wang JT and Chang SC. Citrobacter species. Antimicrob 2017. http://www.antimicrobe.org/b93.asp
Aminharati F, Ehrampoush MH, Soltan Dallal MM, Yaseri M, Dehghani Tafti, AA, Rajabi Z. Citrobacter freundii foodborne disease outbreaks related to environmental conditions in Yazd Province, Iran. Iran J Pub Health. 2019; 48(6):1099-1105.
Tschape H, Prager R, Streckel W, Fruth A, Tietze E, Böhme G. Verotoxinogenic Citrobacter freundii associated with severe gastroenteritis and cases of haemolytic uraemic syndrome in a nursery school: green butter as the infection source. Epidemiol Infect. 1995; 114(3):441-450.
Yates A. Listeria monocytogenes. In: Craig, D. and Bartholomaeus, A. (eds) Agents of foodborne illness.
Canberra: Food Standards Australia New Zealand 2011. 23-30 p.
Gundiri CM. Listeria monocytogenes contamination in bell peppers. J Food Proc Technol. 2016; 7(9):9.
Ranjbar R and Halaji M. Epidemiology of Listeria monocytogenes prevalence in foods, animals and human
origin from Iran: a systematic review and meta-analysis. BMC Pub Health. 2018; 18:1057.
CDC. Multistate outbreak of Listeriosis linked to frozen vegetables (Final Update). 2016.
CDC. Multistate outbreak of Listeriosis linked to packaged salads produced at Springfield, Ohio Dole processing facility (Final Update). 2016.
Desai A, Anyoha A, Madoff L, Lassmann B. Changing epidemiology of Listeria monocytogenes outbreaks, sporadic cases, and recalls globally: A review of ProMED reports from 1996 to 2018. Int J Infect Dis. 2018; 84:48-53.
Shamloo E, Hosseini H, Moghadam Z, Halberg M, Haslberger A, Alebouyeh M. Importance of Listeria monocytogenes in food safety: a review of its prevalence, detection, and antibiotic resistance. Iran J Vet Res. 2019; 20(4):241-254.
Drzewiecka D. Significance and roles of Proteus spp. bacteria in natural environments. Microb Ecol. 2016; 72(4):741-758.
Hamilton AL, Kamm MA, Ng SC, Morrison M. Proteus spp. as putative gastrointestinal pathogens. Clin Microbiol
Rev. 2018; 31(3):e00085-17.
Oni V, Oni A, Esumeh F. Prevalence of bacteria food poison from vegetable salads. Int J Nutr Wellness. 2009; 10(1):580-585.
Cooper K, Davies J, Wiseman J. An investigation of an outbreak of food poisoning associated with organisms of the Proteus group. J Pathol Bacteriol. 2005; 52:91-98.
Cherry WB, Lentz PL, Barnes LA. Implication of Proteus mirabilis in an outbreak of gastroenteritis. Am J Pub Health Nations Health. 1946; 36(5):484-488.
Stehulak N. Shigella: bacteria that causes the foodborne illness Shigellosis. Ohioline. Ohio State University Extension. 2012.
Reller ME, Nelson JM, Mølbak K, Ackman DM, Schoonmaker-Bopp DJ, Root TP, Mintz ED. A large, multiple-restaurant outbreak of infection with Shigella flexneri serotype 2a traced to tomatoes. Clin Infect Dis. 2006;
(2):163-169.
Debnath F, Mukhopadhyay A, Chowdhury G, Saha R, Dutta S. An Outbreak of foodborne infection caused by Shigella sonnei in West Bengal, India.Jpn J Infect Dis., 2018; 71(2):162-166.
Nygren BL, Schilling KA, Blanton EM, Silk BJ, Cole DJ, Mintz ED. Foodborne outbreaks of shigellosis in the USA,
-2008. Epidemiol Infect. 2013; 141(2):233-241.
Loutfy MR, Austin JW, Blanchfield B, Fong IW. An outbreak of foodborne botulism in Ontario. Can J Infect Dis. 2003; 14(4):206-209.
Kendall P. Botulism. [Internet] Colorado State University Extension, Food and Nutrition Series, Fact sheet no.: 9.305 [cited 2020] Available from: https://extension.colostate.edu/topic-areas/nutrition-foodsafety-health/botulism-9-305/
Tassanaudom U, Toorisut Y, Tuitemwong K, Jittaprasartsin C, Wangroongsarb P, Mahakarnchanakul W. Prevalence of toxigenic Clostridium perfringens strains isolated from dried spur pepper in Thailand. Int Food Res J. 2017; 24(3):955-962.
Wijnands L, van der May-Florijn A, Delfgou-van Asch E. Clostridium perfringens associated food borne disease. Final report, National Institute for Public Health and the Environment. 2011. RIVM Report 330371005.
Rennie RP, Anderson CM, Wensley BG, Albritton WL, Mahony DE. Klebsiella pneumoniae gastroenteritis masked by Clostridium perfringens. J Clin Microbiol. 1990; 28(2):216-219.
Fleck-Derderian S, Shankar M, Rao AK, Chatham-Stephens K, Adjei S, Sobel J, Meltzer M, Meaney-Delman D, Pillai S. The epidemiology of foodborne botulism outbreaks: A systematic review. Clin Infect Dis. 2017. 66(1):S73-S81.
Chaudhry R, Dhawan B, Kumar D, Bhatia R, Gandhi J, Patel R, Purohit B. Outbreak of suspected Clostridium butyricum botulism in India. Emerg Infect Dis. 1998; 4(3):506-507.
CDC. Staphylococcal (Staph) food poisoning. 2018.
Kadariya J, Smith T, Thapaliya D. Staphylococcus aureus and Staphylococcal food-borne disease: an ongoing challenge in public health. Biomed Res Int 2014; 827965:1-9,
Denison GA. Epidemiology and symptomatology of Staphylococcus food poisoning: a report of recent
outbreaks. Am J Public Health Nations Health, 1936; 26(12):1168-1175.
Wu S, Huang J, Wu Q, Zhang F, Zhang J, Lei T, Chen M, Ding Y, Xue L. Prevalence and characterization of Staphylococcus aureus isolated from retail vegetables in China. Front Microbiol. 2018; 9(1263):1-10.
Kaur IP, Inkollu S, Prakash A, Gandhi H, Mughal, MS, Du D. Pantoea agglomerans Bacteremia: Is It Dangerous? Case Rep Infect Dis. 2020; 2020:7890305.
Telias A, White JR, Pahl DM, Ottesen AR, Walsh CS. Bacterial community diversity and variation in spray. BMC
Microbiol. 2011; 11(1):1-13.
Cheng A, Liu C, Tsai H, Hsu M, Yang C, Huang Y, Liao C, Hsueh P. Bacteremia caused by Pantoea agglomerans at a medical center in Taiwan, 2000-2010. J Microbiol Immunol Infect. 2013; 46:187-194.
Cruz AT, Cazacu AC, Allen CH. Pantoea agglomerans, a plant pathogen causing human disease. J Clin Microbiol. 2007; 45(6):1989–1992.
Bicudo EL, Macedo VO, Carrara MA, Castro FS, Rage RI. Nosocomial outbreak of Pantoea agglomerans in a pediatric urgent care center. Braz J Infect Dis. 2007; 11(2):281-284.
Mardaneh J and Dallal MM. Isolation, identification and antimicrobial susceptibility of Pantoea (Enterobacter)
agglomerans isolated from consumed powdered infant formula milk (PIF) in NICU ward: first report from Iran. Iran J Microbiol. 2013; 5(3):263–267.
Dutkiewicz J, Mackiewicz B, Lemieszek M, Golec M, Milanowski J. Pantoea agglomerans: a mysterious bacterium of evil and good. Part III. Deleterious effects: infections of humans, animals and plants. Ann Agric Environ Med. 2016; 23(2):197-205.
Ogundipe FO, Bamidele FA, Oyetoro AO, Ogundipe OO, Tajudeen OK. Incidence of bacteria with potential public health implications in raw Lycopersicon esculentum (tomato) sold in Lagos State, Nigeria. Nig Food J. 2012; 30(2):106-113.
Andrea P. Alternaria in food products. Curr Opin Food Sci. 2016; 11:1-9
Antonissen G, Martel A, Pasmans F, Ducatelle R, Verbrugghe E, Vandenbroucke V, Li S, Haesebrouck F, Immerseel F, Croubels S. The impact of Fusarium mycotoxins on human and animal host susceptibility to infectious diseases. Maresca M, editor. TOXINS. 2014; 6(2):430–452.
Boyce TG. Hemorrhagic Colitis. MSD MANUAL Consumer Version (Online) 2019 (Cited 2020) Available from:
https://www.msdmanuals.com/home/digestivedisorders/gastroenteritis/hemorrhagic-colitis
Brown KL. Control of bacterial spores. Br Med Bull. 2000; 56(1):158-171.
Fusco V, Abriouel H, Benomar N, Kabisch J, Chieffi D, GyuSung C, Franz C. Chapter 10 - Opportunistic food-borne pathogens. Food Safety and Preservation. Academic Press. 2018. 269-306 p.
Lingyan Z, Yong L, Liwen J, Fangming D. Determination of fungal community diversity in fresh and traditional Chinese fermented pepper by pyrosequencing, FEMS Microbiol Lett. 2016; 363(24):1-7:
Ware M. Medical News Today: Everything you need to know about tomatoes. (Online) 2017 (Cited 2020) Available from: https://www.medicalnewstoday.com/articles/273031
Denis N, Zhang H, Leroux A, Trudel R, Bietlot H. Prevalence and trends of bacterial contamination in fresh fruits and vegetables sold at retail in Canada. Food Contr. 2016; 67:225-234.
Hernández-Cortez C, Palma-Martínez I, Gonzalez-Avila LU, Guerrero-Mandujano A, Solís RC, Castro-Escarpulli G. Food Poisoning Caused by Bacteria (Food Toxins). In: Poisoning -From Specific Toxic Agents to Novel Rapid and Simplified Techniques for Analysis [Internet]. InTech; 2017 [cited 2021 Jun 29] 10.5772/intechopen.69953
Costa J, Rodríguez R, Garcia-Cela E, Medina A, Magan N, Lima N, Battilani P, Santos C. Overview of fungi and
mycotoxin contamination in capsicum pepper and in its derivatives. Toxins. 2019; 11(1):1-16.
Marshall KE, Nguyen TA, Ablan M, Nichols MC, Robyn MP, Sundararaman P, Whitlock L, Wise M, Jhung M.
Investigations of Possible Multistate Outbreaks of Salmonella, Shiga Toxin-Producing Escherichia coli, and Listeria
monocytogenes Infections - United States, 2016. MMWR Surveill Summ. 2020; 69(6):1-14.
Gu G, Strawn LK, Oryang DO, Zheng J, Reed EA, Ottesen AR, Bell RL, Chen Y, Duret S, Ingram DT, Reiter MS,
Pfuntner R, Brown EW, Rideout SL. Agricultural practices influence salmonella contamination and survival in preharvest tomato production. Front Microbiol. 2018; 9(2451):1-16. .
Mellou K, Kyritsi M, Chrysostomou A, Sideroglou T, Georgakopoulou T, Hadjichristodoulou C. Clostridium
perfringens foodborne outbreak during an athletic event in northern Greece. Int J Environ Res Pub Health. 2019;
(20):3967.
Asemoloye MD, Jonathan SG, Saddaf R, Habiba Z, Okoawo EE, Bello TS. Incidence and Chemical Implications of
Aflatoxin in Street-Vended Foods. In: Aflatoxin-Control, Analysis, Detection and Health Risks [Internet]. InTech; 2017 [cited 2021 Jun 29] 10.5772/intechopen.68478
Ercoli L, Gallina S, Nia Y, Auvray F, Primavilla S, Guidi F, Pierucci B, Graziotti C, Decastelli L, Scuota S. Investigation of a Staphylococcal Food Poisoning Outbreak from a Chantilly Cream Dessert, in Umbria (Italy). Foodborne Pathog Dis. 2017; 14(7):407-413.
Investigation Details | E. coli Outbreak with Unknown Food Source | CDC [Internet]. [cited 2021 Jun 29].
Buchanan RL, Gorris LGM, Hayman MM, Jackson TC, Whiting RC. A review of Listeria monocytogenes: An update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Contr. 2017; 75:1-13.